Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/66002
標題: 液化木質材料製造聚胺基甲酸酯樹脂及其醇解回收再利用
Polyurethane Resins Made from Liquefied Woody Materials and Its Recovery Utilization with Glycolysis
作者: 尤昭云
Yu, Chao-Yun
關鍵字: Glycolysis;醇解反應;Liquefied woody material;Polyurethane;PU foams;液化木質材料;聚胺基甲酸酯;PU發泡體
出版社: 森林學系所
引用: 1. 呂孔文 (1993) 高分子紅外線光譜分析。財團法人工業技術研究院化學工業研究所。新竹。p. 44;p. 47。 2. 吳舜英 (1997) 塑膠發泡成型技術。高分子工業雜誌社。台北。pp. 17-87。 3. 李文昭、劉正字、侯家翔 (2003) 杉木木材之液化處理及其在酚-甲醛膠合劑製造之應用。林業研究季刊 25 (3):73-86。 4. 李文昭、張嘉方 (2003) 聚乙二醇液化之探討-杉木及相思樹。林產工業 22 (3):205-214。 5. 李文昭、張嘉方 (2004a) 多元醇液化杉木在聚胺酯發泡體製造之應用。中華林學季刊 37(1):111-119。 6. 李文昭、劉正字、侯家翔 (2004) 液化相思樹木材製備酚甲醛樹脂膠合劑。林產工業 23(1):43-53。 7. 李文昭、張嘉方 (2004b) 多元醇液化相思樹在聚胺基甲酸酯發泡體製造之應用。林產工業 23(3):239-248。 8. 李文昭、張嘉方 (2007) 異氰酸酯種類對液化木材所製造聚胺基甲酸酯發泡體性質之影響。中華林學季刊 40(3):405-416。 9. 李紹雄、劉益軍 編著 (2002) 聚氨酯樹脂及其應用。化學工業出版社。北京。pp. 124-136。 10. 張上鎮、吳季玲、王升陽、張惠婷 (1998) 木粉濃度與顆粒大小對木材散反射傅立葉轉換紅外線光譜分析之影響。台灣林業科學 13(1):11-18。 11. 張豐吉、杜明宏(1976)竹材溶解紙漿製造之研究。中華林學季刊 9(1):97-106。 12. 張豐吉、杜明宏(1978)竹材加工廢料之製漿造紙試驗。中華林學季刊 11(3):51-68。 13. 張豐吉、杜明宏(1989)台灣產重要樹種化學性質之研究(Ⅲ)十樹種之化學性質。中華林學季刊 22(1):43-51。 14. 陳道達 譯著 (1992) 熱分析。國立編譯館。台北。pp. 251-352。 15. 賀孝雍 譯著 (1989) 有機化合物之光譜鑑定法。眾光文化事業有限公司。台北。pp.95-180。 16. 賴耿陽 譯著(1993)塑膠大全。復漢出版社。台南。pp.287-298。 17. Borda, J., G. Pásztor and M. Zsuga (2000) Glycolysis of polyurethane foams and elastomers. Polym. Degrad. Stab. 68: 419-422. 18. Borda, J., A. Rácz and M. Zsuga (2002) Recycled polyurethane elastomers: a universal adhesive. J. Adhes. Sci. Technol. 16(9): 1225–1234. 19. Dai, Z., B. Hatano, J. Kadokawa and H. Tagaya (2002) Effect of diaminotoluene on the decomposition of polyurethane foam waste in superheated water. Polym. Degrad. Stab. 76: 179-184. 20. Elidrissi, A., O. Krim, S. Ouslimane, M. Berrabeh and R. Touzanil (2007) Synthesis, characterization, and chemical degradation of segmented polyurethanes with butylamine for chemical recycling. J. Appl. Polym. Sci. 105: 1623-1631 21. Fukaya, T., H. Watando, S. Fujieda, S. Saya, C. M. Thai and M. Yamamoto (2006) Reheating decomposition process as chemical recycling for rigid polyurethane foam. Polym. Degrad. Stab. 91: 2549-2553. 22. Gerlock, J., J. Braslaw and M. Zlnbo (1984) Polyurethane waste recycling. 1 Glycolysis and hydroglycolysis of water-blown foams. Ind. Eng. Chem. 23: 545-552. 23. Karger–Kocsis, J. and J. Gremmels (2000) Use of hygrothermal decomposed polyester-urethane waste for the impact modification of epoxy resins. J. Appl. Polym. Sci. 78: 1139-1151. 24. Kurimoto, Y., S. Doi and Y. Tamura (1999) Species effects on wood-liquefaction in polyhydric alcohols. Holzforschung 53(6):617-622. 25. Kurimoto, Y., M. Takeda, A. Koizumi, S. Yamauchi, S. Doi and Y. Tamura (2000) Mechanical properties of polyurethane films prepared from liquefied wood with polymeric MDI. Bioresource Technol. 74:151-157. 26. Kurimoto, Y., M. Takeda, S. Doi, Y. Tamura and H. Ono (2001) Network structures and thermal properties of polyurethane films prepared from liquefied wood. Bioresource Technol. 77: 33-40. 27. Lee, J. Y. and D. Kim (2000) Desaminated glycolysis of water-blown rigid polyurethane foams. J. Appl. Polym. Sci. 77: 2646–2656. 28. Lee, S. H., O. Tsutomu and T. Yoshikuni (2005) Polyol recovery from Biomass-based polyurethane foam by glycolysis. J. Appl. Polym. Sci. 95:975-980. 29. Lee, W. J. and Y. C. Chen (2008) Novolak PF resins prepared from phenol liquefied Cryptomeria japonica and used in manufacturing moldings. Bioresource Technol. 99(15): 7247-7254. 30. Lee, W. J. and M. S. Lin (2008) Preparation and application of polyurethane adhesives made from polyhydric alcohol liquefied Taiwan acacia and China fir. J. Appl. Polym. Sci. 109: 23-31. 31. Modesti, M., F. Simioni, R. Munari and N. Baldoin (1995) Recycling of flexible polyurethane foams with a low aromatic amine content. React. Funct. Polym. 26: 157-65. 32. Molero, C., A. de Lucas and J. F. Rodríguez (2006a) Recovery of polyols from flexible polyurethane foam by split-phase glycolysis: Glycol influence. Polym. Degrad. Stab. 91: 221-228. 33. Molero, C., A. de Lucas and J. F. Rodríguez (2006b) Recovery of polyols from flexible polyurethane foam by split-phase glycolysis with new catalysts. Polym. Degrad. Stab. 91: 894-901. 34. Molero, C., A. de Lucas and J. F. Rodríguez (2008) Recovery of polyols from flexible polyurethane foam by ‘‘split-phase’’ glycolysis: Study on the influence of reaction parameters. Polym. Degrad. Stab. 93: 353-361. 35. Ravey, M. and E. M. Pearce (1997) Flexible polyurethane foam. 1. thermal decomposition of a polyether-based, water-blown commercial type of flexible polyurethane foam. J. Appl. Polym. Sci. 63:47-74. 36. Scheirs, J. (1998) Recycling of polyurethanes. In. “Polymer Recycling” John Wiley and Sons, pp 340-377. 37. Ulrich, H., A. Odinak, B. Tucker and A. A. R. Sayigh (1978) Recycling of polyurethane and polyisocyanurate foam. Polym. Eng. Sci.18 (11):844-848. 38. Watando, H., S. Saya, T. Fukaya, S. Fujieda and M. Yamamoto (2006) Improving chemical recycling rate by reclaiming polyurethane elastomer from polyurethane foam. Polym. Degrad. Stab. 91: 3354-3359. 39. Wu, C. H., C. Y. Chang and J. K. Li (2002) Glycolysis of rigid polyurethane from waste refrigerators. Polym. Degrad. Stab. 75: 413-421. 40. Wang, S. K. and C. S. P. Sung (2002) Spectroscopic characterization of model urea, urethane compound, and diamine extender for polyurethane-urea. Macromolecules 35; 877-882. 41. Yamada, T. and H. Ono (1999) Rapid liquefaction of lignocellulosic waste by using ethylene carbonate. Bioresource Technol. 70:61-67. 42. Zia, K. M., H. N. Bhatti and I. A. Bhatti (2007) Methods for polyurethane and polyurethane composites, recycling and recovery: A review. React. Funct. Polym. 67:675–692.
摘要: 
本研究將柳杉(Cryptomeria japonica; Japanese cedar)、麻竹(Dendrocalamus latiflorus; Ma bamboo)及桂竹(Phyllostachys makinoi; Makino bamboo)等木質材料以聚乙二醇及丙三醇之混合液為溶劑,H2SO4及HCl為催化劑進行液化處理,並將其液化木質材料與4,4’-二苯甲烷二異氰酸酯(PMDI)反應製造聚胺基甲酸酯發泡體,探討PU樹脂調配條件對PU發泡體性質之影響。另利用二乙二醇、乙二醇及丙二醇為溶劑,二乙醇胺為催化劑,對此PU發泡體進行醇解反應,並進一步利用此醇解產物做為回收多元醇原料,探討其與PMDI及1,6-六亞甲基-二異氰酸酯(Hexamethylene diisocyanate; HDI)之三聚合體(Desmodur N)兩種異氰酸酯反應再製造發泡體之可行性。由試驗結果得知,以PEG-400/glycerol為液化藥劑,H2SO4為催化劑對柳杉、麻竹及桂竹均有良好之液化效果;液化木質材料所製造PU發泡體之性質受各成分調配比例所影響,其中異氰酸酯比例較高者,其PU樹脂中液化木質材料之架橋反應較完全,發泡體機械性能及耐溶劑性較高,吸水性較低。以液化生質物為基質之PU發泡體利用二醇類為溶劑,二乙醇胺為催化劑,在150~190℃加熱溫度下可快速進行醇解反應。FTIR光譜分析顯示經醇解處理後,其胺基甲酸酯鍵結及尿素鍵結產生降解;GPC分子量分析顯示,醇解產物的平均分子量隨反應時間延長而下降。醇解產物再應用於PU發泡體製造時,宜採用重量比75/25之原生多元醇/醇解產物為多元醇原料,其所得再製發泡體機械強度高,載重之形變量較小,耐溶劑之重量保存率高。TGA熱重分析顯示,添加醇解產物可使PU發泡體之耐熱性提高。以聚乙二醇為多元醇原料之發泡體,增加醇解產物之添加量,可提高發泡體在高溫熱裂解後之重量殘留率。

In this study, Japanese cedar (Cryptomeria Japonica), Ma bamboo (Dendrocalamus latiflorus) and Makino bamboo (Phyllostachys makinoi) were liquefied in polyethylene glycol/glycerol co-solvent with H2SO4 or HCl as catalyst. The liquefied woody materials were blended with PMDI (4,4'-Diphenylmethane diisocyanate;MDI) to prepare the PU foams. The effects of preparation conditions of PU resin on the properties of PU foams were investigated. In addition, diethylene glycol, ethylene glycol and propylene glycol as solvent and diethanolamine as the catalyst was used in the glycolysis of PU foams. The glycolysis products were blended with PMDI and Desmodur N to prepare the PU foams. The feasibility of PU foams made from the glycolysis products and their properties were investigated, too. The results showed that Japanese cedar, Ma bamboo and Makino bamboo all had a good liquefaction efficiency as liquefied in polyethylene glycol/glycerol co-solvent with H2SO4 as a catalyst. The properties of PU foams made from liquefied woody material were influenced by the formulas of PU resins. Wherein, the PU foams made with a higher ratio of isocyanate would had a more complete crosslinking structure, a better mechanical properties and solvent resistance, and a lower water adsorption. The results showed that dihydric alcohol as the solvent with diethanolamine as the catalyst under 150~190℃ was useful in the glycolysis of the liquefied woody material-based PU foams. FTIR analysis showed that the urethane bond and urea bond in PU forms were degraded after glycolysis. GPC analysis showed that the average molecular weight of the glycolysis product would decrease as the reaction time was prolonged. When the glycolysis products were used to re-manufacture the PU foams, using the mixture of raw polyol/glycolysis products with a weight ratio of 75/25 as the polyol would be the most suitable. Those PU foams had a high mechanical strength, low loading deformation and a high percent of weight retention for solvent resistance TGA analysis showed that the heat-resistance of the PU foams could be increased by blending with glycolysis products. When PU foams were prepared with PEG as the raw materials, increasing the amount of glycolysis product added could increase the char content after thermal degradation at high temperature.
URI: http://hdl.handle.net/11455/66002
Appears in Collections:森林學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.