Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/66010
標題: 溶膠-凝膠法製作含生物質熱塑型PU樹脂/矽氧混成材料之性質
Properties of Hybrids Prepared from Biomass Containing Thermoplastic PU Resin/Silica by Sol-Gel Process
作者: 趙中譽
Chao, Chung-Yu
關鍵字: 3-Aminopropyltriethoxysilane;3-(三乙氧矽基)丙胺;Organic-inorganic hybrids;Polyol liquefaction;Cryptomeria japonica;Sol-gel process;Tetraethoxysilane;Thermoplastic polyurethane;有機-無機混成材料;多元醇液化;柳杉;溶膠-凝膠法;四乙基矽氧烷;熱塑型聚胺基甲酸酯
出版社: 森林學系所
引用: 1.Ahn, T.O., L.S. Choi, H.M. Jeong and K. Cho (1993) Thermal and mechanical properties of thermoplastic polyurethane elastomers from different polymerization methods. Polym. Int. 31:329-333. 2.Aneja, A. and G.L. Wilkes (2003) A systematic series of model PTMO based segmented polyurethanes reinvestigated using atomic force microscopy. Polymer 44:7221-7228. 3.Cervantes-Uc, J.M., J.I. Moo Espinosa, J.V. Cauich-Rodirguez, A. Avila-Ortega, H. Vazquez-Torres, A. Marcos-Fernandez and J. San Roman (2009) TGA-FTIR studies of segmented aliphatic polyurethanes and their nanocomposites prepared with commercial montmorillonites. Polym. Degrad. Stabil. 94:1666-1677. 4.Chang, H.T., T.F. Yeh and S.T. Chang (2002) Comparisons of chemical characteristic variations for photodegraded softwood and hardwood with/without polyurethane clear coatings. Polym. Degrad. Stabil. 77:129-135. 5.Chattopadhyay, D.K. and K.V.S.N. Raju (2007) Structural engineering of polyurethane coatings for high performance applications. Prog. Polym. Sci. 32:352-418. 6.Chattopadhyay, D.K. and D.C. Webster (2009) Thermal stability and flame retardancy of polyurethanes. Prog. Polym. Sci. 34:1068-1133. 7.Chen, S., J. Sui and L. Chen (2004) Positional assembly of hybrid polyurethane nanocomposites via incorporation of inorganic building blocks into polymer. Colloid Polym. Sci. 283:66-73. 8.Chen Y. and J.O. Iroh (1999) Synthesis and characterization of polyimide/silica hybrid composites. Chem. Mat. 11:1218-1222. 9.Coleman, M.M., K.H. Lee, D.J. Skrovanek and P.C. Painter (1986) Hydrogen bonding in polymer. 4. Infrared temperature studies of a simple polyurethane. Macromolecules 19:2149-2157. 10.Cooper, S.L. and A.V. Tobolsky (1966) Properties of linear elastomeric polyurethanes. J. Appl. Polym. Sci. 10:1837-1844. 11.Dubois, C., M. Rajabian and D. Rodrigue (2006) Polymerization compounding of polyurethane-fumed silica composites. Polym. Eng. Sci. 46:360-371. 12.Frost, R.L. and E. Mendelovici (2006) Modification of fibrous silicates surfaces with organic derivatives: An infrared spectroscopic study. J. Colloid Interface Sci. 294:47-52. 13.Irusta, L. and M.J. Fernandez-Berridi (1999) Photooxidative behaviour of segmented aliphatic polyurethanes. Polym. Degrad. Stabil. 63:113-119. 14.Jeon, H.T., M.K. Jang, B.K. Kim and K.H. Kim (2007) Synthesis and characterizations of waterborne polyurethane-silica hybrids using sol-gel process. Colloid Surf. A-Physicochem. Eng. Asp. 302:559-567. 15.Jiang, H., Z. Zheng, W. Song, Z. Li and X. Wang (2007) Alkoxysilane functionalized polyurethane/polysiloxane copolymer: Synthesis and the effect of end-capping agent. Polym. Bull. 59:53-63. 16.Kim, H.D., T.J. Lee, J.H. Huh and D.J. Lee (1999) Preparation and properties of segmented thermoplastic polyurethane elastomers with two different soft segments. J. Appl. Polym. Sci. 73:345-352. 17.Kurimoto, Y., S. Doi and Y. Tamura (1999) Species effects on wood-liquefaction in polyhydric alcohols. Holzforschung 53:617-622. 18.Kurimoto, Y., M. Takeda, A. Koizumi, S. Yamauchi, S. Doi and Y. Tamura (2000) Mechanical properties of polyurethane films prepared from liquefied wood with polymeric MDI. Bioresour. Technol. 74:151-157. 19.Kurimoto, Y., M. Takeda, S. Doi, Y. Tamura and H. Ono (2001a) Network structures and thermal properties of polyurethane films prepared from liquefied wood. Bioresour. Technol. 77:33-40. 20.Kurimoto, Y., A. Koizumi, S. Doi, Y. Tamura and H. Ono (2001b) Wood species effects on the characteristics of liquefied wood and the properties of polyurethane films prepared from the liquefied wood. Biomass Bioenerg. 21:381-390. 21.Lai, S.M., C.K. Wang and H.F. Shen (2005) Properties and preparation of thermoplastic polyurethane/silica hybrid using sol-gel process. J. Appl. Polym. Sci. 97:1316-1325. 22.Lee, S.H., Y. Teramoto and N. Shiraishi (2002) Resol-type phenolic resin from liquefied phenolated wood and its application to phenolic foam. J. Appl. Polym. Sci. 84:468-472. 23.Lee, S.H., T. Ohkita and Y. Teramoto (2005) Polyol recovery from biomass-based polyurethane foam. J. Appl. Polym. Sci. 95:975-980. 24.Lin, L., M. Yoshioka, Y. Yao and N. Shiraishi (1995) Physical properties of moldings from liquefied wood resins. J. Appl. Polym. Sci. 55:1563-1571. 25.Liu, H. and S. Zheng (2005) Polyurethane networks nanoreinforced by polyhedral oligomeric silsesquioxane. Macromol. Rapid Commun. 26:196-200. 26.Mahfuz, H., V.K. Rangari, M.S. Islam and S. Jeelani (2004) Fabrication, synthesis and mechanical characterization of nanoparticles infused polyurethane foams. Compos. Pt. A-Appl. Sci. Manuf. 35:453-460. 27.Mattia J. and P. Painter (2007) A comparison of hydrogen bonding and order in a polyurethane and poly(urethane-urea) and their blends with poly(ethylene glycol). Macromolecules 40:1546-1554. 28.Narayan, R., D.K. Chattopadhyay, B. Sreedhar, K.V.S.N. Raju, N.N. Mallikarjuna and T.M. Aminabhavi (2006) Synthesis and characterization of crosslinked polyurethane dispersions based on hydroxylated polyesters. J. Appl. Polym. Sci. 99:368-380. 29.Novak, B.M. (1993) Hybrid nanocomposite materials between inorganic glasses and organic polymers. Adv. Mater. 5:422-433. 30.Paik Sung, C.S., C.B. Hu and C.S. Wu (1980) Properties of segmented poly(urethaneureas) based on 2,4-toluene diisocyanate. 1. Thermal transitions, X-ray studies, and comparison with segmented poly(urethanes). Macromolecules 13:111-116. 31.Pereira, A.P.V., W.L. Vasconcelos and R.L. Orefice (2000) Novel multicomponent silicate-poly(vinyl alcohol) hybrids with controlled reactivity. J. Non-Cryst. Solids 273:180-185. 32.Petrovic, Z.S. and J.B. Simendic (1985) Study of the effect of soft segment length and concentration on properties of polyetherurethanes. I. The effect on physical and morphological properties. Rubber Chem. Technol. 58:685-700. 33.Petrovic, Z.S. and J. Ferguson (1991) Polyurethane elastomers. Prog. Polym. Sci. 16:695-836. 34.Ravey, M. and E.M. Pearce (1997) Flexible polyurethane foam. І. Thermal decomposition of a polyether-based, water-blown commercial type of flexible polyurethane foam. J. Appl. Polym. Sci. 63:47-74. 35.Schmidt H. (1985) New type of non-crystalline solids between inorganic and organic materials. J. Non-Cryst. Solids 73:681-691. 36.Schottner G. (2001) Hybrid sol-gel derived polymers: applications of multifunctional materials. Chem. Mat. 13:3422-3435. 37.Spathis, G., M. Niaounakis, E. Kontou, L. Apekis, P. Pissis and C. Christodoulides (1994) Morphological changes in segmented polyurethane elastomers by varying the NCO/OH ratio. J. Appl. Polym. Sci. 54:831-842. 38.Tohmura, S.I., G.Y. Li and T.F. Qin (2005) Preparation and characterization of wood polyalcohol-based isocyanate adhesives. J. Appl. Polym. Sci. 98:791-795. 39.Wang, J., Y. Chen and J. Wang (2006) Preparation and properties of a novel elastomeric polyurethane/organic montmorillonite nanocomposite. J. Appl. Polym. Sci. 99:3578-3585. 40.Wei, Y., F. Cheng, H. Li and J. Yu (2004) Synthesis and properties of polyurethane resins based on liquefied wood. J. Appl. Polym. Sci. 92:351-356. 41.Wen, J. and G.L. Wilkes (1996) Organic/inorganic hybrid network materials by the sol-gel approach. Chem. Mat. 8:1667-1681. 42.Wilhelm C. and J.L. Gardette (1998) Infrared analysis of the photochemical behaviour of segmented polyurethanes: aliphatic poly(ether-urethane)s. Polymer 39:5873-5980. 43.Williams, P.T. and S. Besler (1996) The influence of temperature and heating rate on the slow pyrolysis of biomass. Renew. Energy 7:233-250. 44.Zuo, M. and T. Takeichi (1999) Preparation and characterization of poly(urethane-imide) films prepared from reactive polyimide and polyurethane prepolymer. Polymer 40:5153-5160.
摘要: 
本研究以聚四甲基醚二醇 (Polytetramethylene ether glycol; PTMG) 、六亞甲基二異氰酸酯 (1,6-Hexamethylene diisocyanate; HDI) 及1,4-丁二醇 (1,4-Butanediol; 1,4-BD) 為原料,合成兩種不同硬鏈段含量之熱塑型聚胺基甲酸酯樹脂 (Thermoplastic polyurethane; TPU) ,並將其與四乙基矽氧烷 (Tetraethoxysilane; TEOS) 混合後藉由溶膠-凝膠法 (Sol-gel process) 製備有機-無機混成材料,進一步則利用多元醇液化柳杉取代部分PTMG合成液化木材改質TPU樹脂 (LTPU) ,另於樹脂合成階段添加3-(三乙氧矽基)丙胺 (3-Aminopropyltriethoxysilane; APTES) 製備含矽氧烷分子團之矽氧烷改質TPU樹脂,並探討經不同改質處理之TPU樹脂與TEOS所製作混成材料之性質。由試驗結果得知硬鏈段含量為23.5%之TPU-A-0具有較佳之拉伸性質,而硬鏈段含量為27.5%之TPU-B-0則有較佳之耐溶劑性及熱穩定性;將TPU與TEOS混合製作TPU/矽氧混成材料時,隨TEOS添加量增加,混成材料薄膜具備較高之儲存模數及加熱至600℃之重量保留率。而於TPU樹脂結構中導入多元醇液化柳杉或矽氧烷分子團可提高TPU樹脂薄膜之拉伸強度、儲存模數及熱穩定性,其所製作之矽氧混成材料薄膜亦隨TEOS添加量增加,耐溶劑性及熱穩定性提高。

In this study, two kinds of thermoplastic polyurethane resin (TPU) with different hard segment contents were synthesized from polytetramethylene ether glycol (PTMG) , 1,6-hexamethylene diisocyanate (HDI) and 1,4-butanediol (1,4-BD) . These TPU resins were blended with tetraethoxysilane (TEOS) to prepare organic-inorganic hybrids by sol-gel process. Furthermore, the liquefied wood-modified TPU were prepared by replacing part of PTMG with polyol-liquefied Cryptomeria japonica and the alkoxysilane-modified TPU that containing alkoxysilane groups were prepared by adding 3-aminopropyltriethoxysilane (APTES) during resin synthesis. The properties of hybrids made by blending the modified TPU resins and TEOS were investigated. The results show that TPU-A-0 with 23.5% of hard segment content had better tensile properties and TPU-B-0 that contained 27.5% of hard segment content possess better solvent resistance and thermal stability. When mixed TPU with TEOS to prepare TPU/silica hybrids, increment of TEOS content would lead hybrids with higher storage modulus and more char yield at 600℃. Incorporating liquefied Cryptomeria japonica or alkoxysilane groups into the molecular structure of TPU resins, the tensile strength, storage modulus and thermal stability of TPU films could be advanced. The solvent resistance and thermal stability of hybrids made with modified TPU would raise as the content of TEOS increased.
URI: http://hdl.handle.net/11455/66010
其他識別: U0005-2208201110155700
Appears in Collections:森林學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.