Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/66061
標題: 惠蓀林場天然闊葉林與杉木林土壤呼吸之季節變化
Seasonal Variations of Soil Respiration at Natural Hardwoods and China-fir Plantation in Hui-Sun Experiment Forest
作者: 張怡佩
Chang, Yi-Pei
關鍵字: natural hardwoods;天然闊葉林;China-fir plantation;soil respiration;litter fall;杉木人工林;土壤呼吸;枯枝落葉
出版社: 森林學系所
引用: 李宏明 (2002) 台灣森林土壤CO2之釋放通量及其影響因子。國立台灣大學農業化學研究所碩士論文。 李振州、葉學文、譚鎮中 (2003) 關刀溪森林生態系土壤二氧化碳釋放來源之探討。土壤與環境 6(3):145-152。 林良平 ( 1987 ) 土壤微生物學。南山堂。508-509頁。 周育如 (2003)惠蓀林場枯落物養分迴歸量與分解速率之季節變動。國立中興大學森林學系碩士論文。 周存宇、周國逸、王迎紅、張德強、劉世忠、王耀思、孫揚(2005)鼎湖山針闊葉混交林土壤呼吸的研究。北京林業大學學報 27(4):23 27。 康碩容 ( 2007 ) 土壤溫度、水勢和養分對土壤微生物呼吸的影響。國立中興大學森林學系碩士論文。 陳信佑 ( 2005 ) 天然林與杉木林不同冠層高度二氧化碳濃度的時間變化。國立中興大學森林學系碩士論文。 游偉青 ( 2006 ) 疏伐對於惠蓀林場柳杉人工林土壤呼吸之影響。立 中興大學森林學系碩士論文。 曾桂香 (2006) 棲蘭山區台灣扁柏森林土壤呼吸之探討。國立東華大學自然資源管理研究所碩士論文。 曾怡蓉 (2007) 柳杉人工林林地土壤呼吸的動態變化。國立屏東科技大學森林系碩士論文。 劉紹輝、方精雲、清田 信(1998)北京山地溫帶森林的土壤呼吸。植物生態學報 22(2):119-126。 Adu J, K. and J. M. Oades (1978) Utilization of organic materials in soil aggregates by bacteria and fungi. Soil Biology and Biochemistry 10:117-122. Atlas, R. M. and R. Bartha (1998) Microbail Ecology. 4rd ed. Benjamin/Cummings Publishing Company. pp.285-291. Baath, E. and K. Arnebrant (1994) Growth rate and response of bacterial communities to pH in limed and ashreated forest soils. Soil Biology and Biochemistry 26:995-1001. Bailey, V. L., J. L. Smith and H. Bloton Jr. (2002) Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration. Soil Biology and Biochemistry 34:997-1007. Bohlen, P. J. and C. A. Edwards (1995) Earthworm effects of N dynamics and soil respiration in microcosm sreceiving organic and inorganic nutrients. Soil Biology and Biochemistry 27:341-348. Brant, J. B., E. W. Sulzman and D. D. Myrold (2006) Microbial community utilization of added carbon substrates in response to long-term carbon input manipulation. Soil Biology and Biochemistry 38:2219-2232. Bowden, R. D., K. J. Nadelhoffer and R. D. Boone (1993) Contributions of above ground litter, below ground litter and root respiration to total soil respiration in a temperate mixed hardwood forest. Canadian Journal of Forest Research 23:1402-1407. Davidson, E. A., L. V. Verchot, J. H. Cattanio, I. L. Ackerman and J. E. M. Carvalho (2000) Effects of soil water content on soil respiration in forest and cattle pastures of eastern Amazonia. Biogeochemistry 48:53-69. Davidson, E. A., K. Savage, P. Bolstad, D. A. Clark, P. S. Curtis, D. S. Ellsworth, P. J.Hanson, B. E. Law, Y. Luo, K. S. Pregitzer, J. C. Randolph and D. Zak (2002) Belowground carbon allocation in forests estimated from litterfall and IRGA-based soil respiration measurements. Agricultural and Forest Meteorology 113:39-51. Fioretto, A., S. Papa, A. Pellegrino and A. Fuggi (2007) Decomposition dynamics of Myrtus communis and Quercus ilex leaf litter: Mass loss, microbial activity and quality change. Applied Soil Ecology 36:32-40. Gee, G. W. and J. W. Bauder (1986) Particle-size Analysis. In A. L. Page et al. (eds.) Methods of soil analysis. Part 1. 2nd ed. Agronomy 9:383-411. Goulden, M. L., S. C. Wofsy, J. W. Harden, S .E. Trumbore, P. M. Crill, S. T. Gower, T. Fries, B. C. Daube, S. -M.Fan, D. J. Stton, A. Bazzaz and J. W. Munger (1998) Sensitivity of boreal forest carbon balance to soil thaw. Science 279:214-217. Hanson, P. J., N. T. Edwards, C. T. Garten and J. A.Andrews (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48:115-146. Komulainen, M. and J. Mikola (1995) Soil processesas influenced by heavymetals and the composition of soil fauna. Journal of Applied Ecology 32:234- 241. Kosugi, Y., H. Tanaka, S. Takanashi, N. Matsuo, N. Ohte, S. Shibata and M. Tani (2005) Three years of carbon and energy fluxes from Japanese evergreen broad-leaved forest. Agricultural and Forest Meteorology 132:329-343. Kowalenko, C. G., K. C. Ivarson and D. R. Cameron (1978) Effect of moisture content, temperature and nitrogen fertilization on carbon dioxide evolution from field soils. Biology and Biochemistry 10:417-423. Kretzschmar, A. and J. M. Ladd (1993) Decomposition of carbon14 labeled plant material in soil: The influence of substrate location, soil compaction and earthworm numbers. Soil Biology and Biochemistry 25:803-809. Law, B. E., F. M. Kelliher, D. D. Baldocchi, P. M. Anthoni, J. Irvine, D. Moore and S. Van Tuy (2001) Spatial and temporal variation in respiration in a young ponderosa pine forest during a summer drought. Agricultural and Forest Meteorology 110:27-43. Lee, K. H. and S. Jose (2003) Soil respiration, fine root production, and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient. Forest Ecology and Management 185:263-273. Lee, M. S., K. Nakane, T. Nakatsubo and H. Koizumi (2005) The importance of root respiration in annual soil carbon fluxes in a cool-temperate deciduous forest Japan. Agricultural and Forest Meteorology 134:95-101. Linn, D. M and J. W. Doran (1984) Effect of water-filled pore space on C dioxide and nitrous oxide production in tilled and nontilled soils. Soil Science Society of America Journal 48:1267-1272. Lloyd, J. and J. A. Taylor (1994) On the temperature dependence of soil respiration. Functional Ecology 8:315-323. MacDonald, D. C. (1977) Methods of soil and tissue analysis used in the analytical laboratory. Canadian Forestry Service Information Report. MM-X-78. Martin, J. G. and P. V. Bolstad (2005) Annual soil respiration in broadleaf forests of northern Wiscons influence of moisture site biological chemical physical characteristics. Biogeochemistry 73:149-182. Martin, J. G. and P. V. Bolstad (2005)Annual soil respiration in broadleaf forests of northern Wiscons influence of moisture site biological chemical physical characteristics. Biogeochemistry 73:149-182. McLean E. O. (1982) Soil pH and lime requirement. In: A. L. Page et al. (eds.) Methods of soil analysis. Part 2. 2nd ed. Agronomy 9: 199-223. Mikan, C. J., J. P. Schimel and A. P. Doyle (2002 Temperature controls of microbial respiration in arctic tundra soils above and below freezing. Soil Biology and Biochemistry 34:1785-1795. Mitani, T., Y. Kosugi, K. Osaka, S. Ohkubo, S. Takanashi and M. Tani (2007) Spatial and temporal variability of soil respiration rate at a small watershed revegetated with Japanese cypress. The Japanese Forest Society 88:496-507. Mo, W., M. S. Lee, M. Uchida, M. Inatomi, N. Saigusa, S. Mariko and H. koizumi (2005) Seasonal and annual variations in soil respiration in a cool-temperate deciduous broad-leaved forest in Japan. Agricultural and Forest Meteorology 134:81-94. Musselman, R. C. and D. G. Fox (1991) A review of the role of temperate forests in the global CO2 balance. Air & Waste Management Association 41:798-807. Nabuurs, G. J., R. paivinen, R. Sikkema and G. M. J. Mohren (1997) The role of European forests in the global carbon cycle-a review. Biomass and Bioenergy 13:345-358. Ohashi, M., K. Gyokusen and A. Saito (2000) Contribution of root respiration to total soil respiration in a Japanese cedar (Cryptomeria japonica D. Don) artificial. Ecological Research 15:323-333. Raich, J. W. and W. H. Schlesinger (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B: Chemical and Physical Meteorology 44:81-99. Rayment, M. B and P. G. Jarvis (2000) Temporal and spatial variation of soil CO2 efflux in a Canadian boreal forest. Soil Biology and Biochemistry 32:35-45. Saiz, G., C. Green, K. Butterbach-Bahl, R. Kiese, V. Avitabile and E. P. Farrell (2006) Seasonal and spatial variability of soil respiration in four Sitka spruce stands. Plant Soil 287:161-176. Schlesinger, W. H. (1977) Carbon balance in terrestrial detritus. Annual Review of Ecology and Systematics 8:51-81. Schwendenmann L., E. Veldkamp, T. Brenes, J. J. O’rien and J. Mackensen (2003) Spatial and temporal variation in soil CO2 efflux in an old-growth neotropical rain forest, La Selva, Costa Rica. Biogeochemistry 64:111-128. Silver, W. L., J. Neff, M. McGroddy, E. Veldkamp, M. Keller and R. Cosme (2000) Effects of soil texture on belowground carbon and nutrient storage in a lowland Amazonian forest ecosystem. Ecosystems 3:193-209. Sinsabaugh, R. L., M. M. Carreiro and S. Alvarez (2002) Enzyme and microbial dynamics of litter decomposition. In: Burns, R. C., Dick, R. P. (Eds. ), Enzymes in the Environment: Activity, Ecology and Applications. Marcel Dekker, Inc., pp. 249–266. Sotta, E. D., E. Veldkamp, B. R. Guimaraes, R. K. Paixao, M. L. P. Ruivo and S. S. Almeida (2006) Landscape and climatic controls on spatial and temporal variation in soil CO2 efflux in an Eastern Amazonian Rainforest, Caxiuana, Brazil. Forest Ecology and Management 237:57-64. Sulzman, E. W., J. B. Brant, R. D. Bowden and K. Lajtha (2005) Contribution of aboveground litter, belowground litter, and rhizosphere respiration to total soil CO2 efflux in an old growth coniferous forest. Biogeochemistry 73: 231-256. Trumbore, S. E., O. A. Chadwick and R. Amundson (1996) Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science 272:393-396. Vance, E. D., P. C. Brookes and D. S. Jenkinson (1987) An extraction method for measuring microbial biomass C. Soil Biology and Biochemistry 19:703-707. Vogt, K. A., C. C. Grier and D. J. Vogt (1986) Production, turnover, and nutrient dynamics of above-and belowground detritus in world forest. Advances in Ecological Research 15:303-377 Zhigang, Y., F. Shenglei, Y. Weimin, Z. Guoyi, M.Jiangming, Z. Deqiang, D. Mingmao, W. Xinming and Z. Lixia (2007) Partitioning soil respiration of subtropical forests with different successional stages in south China. Forest Ecology and Management 243:178-186. Zibilske, L. M. (1994) Carbon Mineralization. In A. L. Page et al. (eds.) Methods of soil analysis. Part 2. 2nd ed. Agronomy 38:835-863.
摘要: 
本試驗於惠蓀林場以開放式連續抽氣法測定天然闊葉林及杉木人工林之土壤呼吸量,試驗期間從2006年8月至2007年12月,兩林份又各別有保留枯枝落葉及去除枯枝落葉兩種處理。試驗期間天然闊葉林保留枯枝落葉之土壤呼吸量在28.20±3.48~136.39±3.65 CO2 kg ha-1 day-1之間,去除枯枝落葉之土壤呼吸量在19.06±2.88~88.91±10.37 CO2 kg ha-1 day-1之間,12月土壤呼吸呈最低量,7月為最高峰;杉木林保留枯枝落葉之土壤呼吸量在24.84±7.29~135.10± 18.31 CO2 kg ha-1 day-1之間,去除枯枝落葉之土壤呼吸量在18.01±1.78~75.27± 5.84 CO2 kg ha-1 day-1 之間,12月呈最低量,6月為最高峰,上述結果顯示,土壤呼吸量會隨著時間有季節性的變動。比較天然闊葉林和杉木人工林的土壤呼吸量,不論是年平均值或是月平均量,都顯示天然闊葉林之土壤呼吸量會高於杉木林;在溫度較高的夏季,天然林之土壤呼吸量更會顯著出現大於杉木林。在不同的處理方式上,這兩個林分的土壤呼吸量都呈現保留枯枝落葉處理大於去除枯枝落葉處理的結果。此外,移除枯落物之Q10值明顯高於保留枯落物處理,顯示移除枯落物時,土壤呼吸對溫度的敏感性也相對增高。溫度為本試驗影響土壤呼吸量最重要的環境因子,具顯著正相關性。兩林份的土壤含水率皆相當高,在此條件下含水率對土壤呼吸不具影響。另微生物氮生質量在兩林份之間也不具差異性,但會為隨著季節而變動,且與土壤呼吸呈顯著正相關。天然林之真菌菌落數大於杉木林,細菌則無差異性;具有較多真菌,其枯落物分解速率亦較為快速。天然闊葉林地表枯落物量亦會隨季節而變化,其與土壤呼吸具正相關性;杉木林枯落物較難以分解,會大量累積於林地,枯落物量與土壤呼吸則不具相關性。不同林型及不同的植被會有不相同之枯落物性質,而土壤之微生物結構亦會有所不同,枯落物之分解速率也會受其影響,這些因素可能都是造成天然闊葉林及杉木人工林土壤呼吸量差異的原因。而土壤呼吸量釋放之多寡亦會影響到森林冠層二氧化碳之濃度,進而影響大氣之CO2濃度。

From August 2006 to December 2007, we used Continue-Open-Flow-Chamber method to measure soil respiration at natural hardwoods (NH) and China-fir plantation (CFP) in Hui-Sun Experiment Forest. There were two treatments in each forest type—“with litter fall” and “without litter fall”. In NH the soil respiration rates were 28.20 ± 3.48 ~ 136.39 ± 3.65 and 19.06 ± 2.88 ~ 88.91 ± 10.37 CO2 kg ha-1 day-1 in treatments with and without litter fall respectively. In CFP the soil respiration rates were 24.84 ± 7.29 ~ 135.10 ± 18.31 and 18.01 ± 1.78 ~ 75.27 ± 5.84 CO2 kg ha-1 day-1 in treatments with and without litter fall respectively. In all treatments, the soil respiration was lower in December and higher in June or July. The annual and monthly rates of soil respiration were both higher in NH than in CFP. The difference between NH and CFP was particularly great in summer. In both forest types, the soil respiration rates were higher in the treatments with litter fall than those without litter fall. However, the Q10 value was lower in treatments with litter fall than those without litter fall, suggesting that the removal of litter fall would increase the temperature sensitivity of soil respirations. In this study, temperature was the most important environmental factor of soil respiration. There was a significantly positive correlation between temperature and soil respiration. Due to high soil moisture in both NH and CFP, the soil moisture had no effects on soil respiration. Microbial biomass N showed the seasonal fluctuation and had a positive correlation with soil respiration, but was not significantly different between NH and CFP. Soil fungal colonies were greater in NH than in CFP, probably resulting in greater litter decomposition rate in NH. In NH the litter amount varied with the seasons, and had a positive correlation with soil respiration. By contrast, the litter of CFP was difficult to decompose, and thus accumulated in a large amount on forest floor. Different forest stands and vegetation types had different litter quality as well as different soil micro-organisms status. The differences in soil respiration between NH and CFP may be caused by different litter fall decomposition rate. And the soil respiration rates would affect the CO2 concentrations in the canopy of forest, and furthermore affect the CO2 concentrations in the atmosphere.
URI: http://hdl.handle.net/11455/66061
Appears in Collections:森林學系

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.