Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/66077
標題: 小花蔓澤蘭慢速熱解及其醋液應用於小黑蚊防治之初探
Slow Pyrolysis of Mikania micrantha and the Preliminary Study of Its Vinegar Application on the Control of Forcipomyia taiwana
作者: 林庭瑋
Lin, Ting-Wei
關鍵字: 小花蔓澤蘭;Mikania micrantha;醋液;慢速熱解;小黑蚊;田間試驗;vinegar;slow pyrolysis;biting midge (Forcipomyia taiwana (Shiraki));field experiments
出版社: 森林學系所
引用: 王均琍 (2008) 小花蔓澤蘭生物防治-病原真菌大面積噴施對抑制小花蔓澤蘭種子傳播之研究。行政院農業委員會林務局委託計畫成果報告 pp.1-33。 王松永、丁昭義 (2006) 林產學(上冊)。台灣商務印書館 pp.35;430;438-444;473-475。 王惠鵬 (1997) 南投地區台灣鋏蠓之化學防治。國立中興大學昆蟲學系研究所碩士論文 pp.1-37。 王凱助、葉金彰 (1997) 台灣鋏蠓幼蟲孳生源調查。第九屆病媒防治技術研討會論文集 行政院環境保護署 pp.111-123。 孔國輝、吳七根、胡啟明、葉萬輝 (2000) 微甘菊 (Mikania micrantha H.B.K.)的形態、分類與生態資料補記。熱帶亞熱帶植物學報 8(2):128-130。 行政院農業委員會 (2003) 小花蔓澤蘭之生態習性及蔓延監測。農政與農情 145期。 李學進 (1996) 小黑蚊之生態及綜合防治。第八屆病媒防治技術研討會論文集 行政院環境保護署 pp.15-23。 李學進,侯豐男 (1997) 臺南地區臺灣鋏蠓之季節消長與藥劑防治。第九屆病媒防治技術研討會論文集 行政院環境保護署 pp.125-136。 何姣青、曹賢坤、巫中安、沈倩如 (2004) 竹醋液成分分析與抗菌應用。工業材料月刊 205:93-96。 林宗穎 (2008) 竹炭熱裂解法對生質物變化之分析研究。國立中正大學機械工程學系碩士論文 pp.27-31。 林裕仁、黃國雄、王瀛生 (2003) 淺談竹炭之生產與利用。林業研究專訊 10(3):24-25。 周坤池 (2008) 不同竹種竹炭與竹醋液之製造及碳材於水質改良之應用。國立中 興大學森林學系研究所碩士論文 pp.25-37。 柳忠婉、丁爾成、蔡進來、梁玉寬 (1964) 台灣鋏蠓孳生地調查。昆蟲學報 13(5):757-760。 邱約翰 (2010) 木質生質物於流體化床進行快速裂解之研究。國立中興大學森林學系研究所碩士論文 pp.35-37。 胡永煌 (2002) 竹炭、竹醋液生產技術及應用開發研究進展。林產化學與工業 22(3):79-83。 施昌良 (2010) 小黑蚊之化學防治。2010小黑蚊防治技術研討會 行政院環境保護署小黑蚊防治推廣中心。 張文標、葉良明、張宏、陳文照 (2001a) 竹炭生產和應用。竹子研究匯刊 20(2):49-54。 張文標、葉良明、劉力、錢俊、陳文照、葉喜祥 (2001b) 竹醋液組分分析。竹子研究匯刊 20(4):72-77。 張文標、華毓坤、王傳龍、傅秋華 (2003) 高純度竹醋液生產和加工工藝的研究。林產化學與工業 23(1):46-50。 張伯熙 (1997) 臺灣鋏蠓之殺蟲劑篩選及其誘集研究。國立中興大學昆蟲學研究所碩士論文 pp.29-68 張伯熙、葉金彰 (1997) 物理方法誘集小黑蚊。第九屆病媒防治技術研討會論文集 行政院環境保護署 pp.137-150。 張茂新、凌冰、孔垂華、趙煇、龐雄飛 (2002) 薇甘菊揮發油的化感潛力。應用生態學報 13(10):1300-1302。 張茂新、凌冰、孔垂華、龐雄飛、梁廣文 (2003) 薇甘菊揮發油的化學成分及其對昆蟲的生物活性。應用生態學報 14(1):93-96。 偉丕 (2003) 溶劑手冊。 中國石化出版社 pp.50-52;153-155。 陳弘彬 (2003) 孟宗竹炭與活性炭之研製。國立屏東科技大學森林系研究所碩士論文 pp.42-44。 陳莉鵑 (2006) 竹醋液之蒸餾精製及其於植物生長促進劑之應用。國立中興大學森林學系研究所碩士論文 pp.1-86。 陳富永、徐玲明、蔣慕琰 (2002) 小花蔓澤蘭與蔓澤蘭形態區別及RAPD-PCR 分析。植物保護學會會刊 44:29-39。 陳錦生、連日清、徐世傑 (1980) 台灣鋏蠓之形態及掃描電子顯微鏡觀察(雙翅 目:蠓科)。國立中興大學昆蟲學報 15:211-226。 陳嘉明 (2000) 生物質木材膠合劑。國立編譯館 pp.11-17;78-90;135-140;277-281。 陳滄海、陳仁昭、汪慈慧、王均琍、趙永椿 (2003) 小花蔓澤蘭 (Mikania micrantha) 之生物防治。小花蔓澤蘭危害與管理研討會專刊 中華民國雜草學會 pp.79-96。 莊秀琪、蔡碧仁 (2005) 小花蔓澤蘭萃取物之生物試驗評估與加工新產品開發之研究。行政院農業委員會林務局委託計畫成果報告。 郭耀綸、陳志遠、黃慈薇 (2003) 小花蔓澤蘭的生態生理性狀。小花蔓澤蘭危害與管理研討會專刊 pp.11-27。 郭嘉雯 (2005) 竹醋液基本性質及其抗植物病原細菌之探討。國立中興大學森林 學系研究所碩士論文 pp.1-76。 曾國洋 (2003) 台灣蔓澤蘭屬植物之族群遺傳變異。國立中山大學生物科學系研究所碩士論文 pp.1-5;64-68。 曾顯雄 (2009) 釋放小花蔓澤蘭銹病菌天敵Puccinia spegazzinii防治入侵之小花蔓澤蘭。行政院農業委員會林務局委託計畫成果報告 pp.1-23。 黃彪、高尚愚 (2003) 竹炭、竹醋液生產技術與應用研究綜述。福建林學院學報 23(1):93-96。 裘明華、榮雲龍 (1979) 台灣鋏蠓生活史研究(雙翅目:蠓科)。昆蟲學報 22(4):437-442。 裘明華、榮雲龍 (1980) 台灣鋏蠓幼期的型態。昆蟲學報 23:66-75。 裘明華 (1981) 台灣鋏蠓多次取食習性的觀察(雙翅目:蠓科)。昆蟲學報 24(2):228-230。 廖天賜 (2003) 小花蔓澤蘭(Mikania micrantha)在世界各地蔓延及危害。小花蔓澤蘭危害與管理研討會專刊 中華民國雜草學會 pp.147-153。 劉正字、陳文祺、汪偉杰、盧崑宗、白鷹傑、巫崇生、王翼倫 (2003) 竹炭生產技術研習交流報告。行政員及所屬機關出國報告。 蔣慕琰、徐玲明、陳富永 (2002) 入侵植物小花蔓澤蘭 (Mikania micrantha Kunth)之確認。植物保護學會會刊 44:61-65。 盧崑宗、吳朗岳 (2009) 升溫速率對木材慢速熱解產物基本性質之影響。林產工業 28(1):41-52。 謝志強、殷正華 (2008) 全球生質能源產業與技術發展現況與趨勢。科技發展政策報導 15(5):15-39。 謝伯岳 (2007) 台灣鋏蠓Forcipomyia taiwana (Shiraki)產卵習性、棲群動態與對昆蟲生長調節劑感受性之研究。國立中興大學昆蟲學研究所碩士論文 pp.1-11;39-41。 譚璟憲、薛景泯、柯衛 (1989) 台灣鋏蠓吸血和生殖的觀察。昆蟲學報 32(1):52-57。 太田明、張利軍 (1994) 木酢液分画物による食用きのこの菌糸と子实体生產の促進。木材學會誌 40(4):429-433。 谷田貝光克、山家義人、雲林院源治 (1991) 簡易炭化法と炭化生産物の新しい利用わかりやすい林業研究解說シリーズ。東京。pp.55-60。 芝本武夫、栗山 旭 (1950) 木材炭化。朝倉書店發行 pp.3-33。 城代 進、矢野省一、上原 徹 (1989) 木酢液の成分とその燻香。木材學會誌6(35):555-563。 Alén, R., E. Kuoppala and P. Oesch (1996) Formation of the main degradation compound groups from wood and its components during pyrolysis. J. Anal. Appl. Pyrolysis 36:137-148. Ateş, F., A. E. Pütün and E. Pütün (2005) Fixed bed pyrolysis of Euphorbia rigida with different catalysts. Energy Convers. Manage. 46:421-423. Baimark, Y. and N. Niamsa (2009) Study on wood vinegars for use as coagulating and antifungal agents on the production of natural rubber sheets. Biomass Bioenerg. 33:994-998. Balat, M. and H. Balat (2008) A critical review of bio-diesel as a vehicular fuel. Energy Convers. Manage. 49:2727-2741. Baldock, J. A. and R. J. Smernik (2002) Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood. Org. Geochem. 33:1093-1109. Chen, C. S., J. C. Lien, C. L. Chung and H. Hung (1979) Preliminary observations on the larval breeding sites and adult resting places of a bloodsucking midge, Forcipomyia (Lasiohelea) taiwana (Shiraki)(Diptera: Ceratopogonidae). Bull. Soc. Entomol. Nat’l Chung Hsing Univ., Taiwan 14:51-59. Chuang, Y. Y., C. S. Lin, C. H. Wang and C. C. Yeh (2000) Distribution and seasonal occurrence of Forcipomyia taiwana (Diptera: Ceratopogonidae) in the Nantou area in Taiwan. J. Med. Entomol. 37:205-209. Debboun, M., S. P. Frances and D. Strickman (2006) Insect repellents :principles, methods, and uses. Taylor & Francis pp.279-280; 291-292. Demirbaş, A. (2000) Mechanisms of liquefaction and pyrolysis reaction of biomass. Energy Convers. Manage. 41:633-646. Demirbaş, A. (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers. Manage. 42:1357-1378. Demirbaş, A. (2004) Combustion characteristics of different biomass fuels. Prog. Energy Combust. Sci. 30:219-230. Demirbaş, A. (2005) Pyrolysis of ground beech wood in irregular heating rate conditions. J. Anal. Appl. Pyrolysis 73:39-43. Drichko, N. V., G. Y. Kerenskaia and V. M. Schreib (1999) Medium and temperature effects on the infrared spectra and structure of carboxylic acid–pyridine complexes: acetic acid. J. Mol. Struct. 477:127-141. Elder, T. (1991) Pyrolysis of wood. Wood and Cellulosic Chemistry, edited by D. N.-S. Hon and N. Shiraishi. pp. 665-699, Marcel Dekker, Inc. New York, USA. Gaskin, J. F. and B. A. Schaal (2002) Hybrid Tamarix widespread in U.S. invasion and undetected in native Asian range. Proc. Natl. Acad. Sci. USA 99(17):11256-11259. Guo, X. J., S. R. Wang, K. G. Wang, Q. Liu and Z. Y. Luo (2010) Influence of extractives on mechanism of biomass pyrolysis. J. Fuel Chem. Technol. 38(1):42-46. Horne, P. A. and P. T. Williams (1996) Influence of temperature on the products from the flash pyrolysis of biomass. Fuel 75(9):1051-1059. Hosoya, T., H. Kawamoto and S. Saka (2009) Solid/liquid- and vapor-phase interactions between cellulose- and lignin-derived pyrolysis products. J. Anal. Appl. Pyrolysis 85:237-246. Ismail, B. S. and L. S. Mah (1993) Effects of Mikania micrantha H.B.K. on germination and growth of weed species. Plant Soil 157:107-113. Ismail, B. S. and T. V. Chong (2002) Effects of aqueous extracts and decomposition of Mikania micrantha H.B.K. debris on selected agronomic crops. Weed Biol. Manage. 2(1): 31-38. Kim, D. H., E. S. Han, S. C. Lee and K. Y. Lee (2008) Effects of wood vinegar mixted with Insecticides on the mortalities of Nilaparvata lugens and Laodelphax striatellus (Homoptera: Delphacidae). Anim. Cells Syst. 12:47-52. Kotarska, K., B. Czupryński and G. Kłosowski (2008) Effect of various activators on the course of alcoholic fermentation. J. Food Eng. 77:965-971. Küçük, M and A. Demirbaş (1997) Biomass conversion processes. Energy Convers. Manage. 38(2):151-165. Li, S., J. Lyons-Hart, J. Banyasz and K. Shafer (2001) Real-time evolved gas analysis by FTIR method an experimental study of cellulose pyrolysis. Fuel 80:1809-1817. Lien, J. C. (1989) Taxonomic and ecological studies on the biting midges of the subgenus Lasiohelea, genus Forcipomyia from Taiwan. J. Taiwan Museum 42:37-77. Lien, J. C. (1991) Seven new species and four new record of Forcipomyia subgenus Lasiohelea from Taiwan (Diptera:Ceratopogonide). J. Taiwan Museum 44:83-116. Linley, J. R., A. L. Hoch and F. P. Pinheiro (1983) Biting midges (Diptera: Ceratopogonidae) and human health. J. Med. Entomol. 20:347-364. McGrath, T. E., W. G. Chan and M. R. Hajaligol (2003) Low temperature mechanism for the formation of polycyclic aromatic hydrocarbons from the pyrolysis of cellulose. J. Anal. Appl. Pyrolysis 66:51-70. Mu, J., T. Uehara and T. Furuno (2003) Effect of bamboo vinegar on regulation of germination and radicle growth of seed plants. J. Wood Sci. 49:262-279. Onay, O. (2007) Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed reactor. Fuel Process. Technol. 88:523-531. Parikh, J., S. A. Channiwala and G. K. Ghosal (2007) A correlation for calculating elemental composition from proximate analysis of biomass materials. Fuel 86:1710-1719. Pei, K., Y. Li and H. Li (2003) Hydrogen-bonding interaction between acetic acid and pyridine 1:1 complex. J. Mol. Struct. 660:113-118. Peng, C. I., K. F. Chung and H. L. Li. (1998) Flora of Taiwan (second edition) Volume Four (Compositae). Editorial Committee of the Flora of Taiwan. Taipei, Taiwan. Peng, Y. and S. Wu (2010) The structural and thermal characteristics of wheat straw hemicellulose. J. Anal. Appl. Pyrolysis 88:134-139. Pettersen, R. C. (1984) The chemical composition of wood. Madison, WI 53705:57-126. Forest products laboratory, Forest service, U.S. department of agriculture. Pulido-Novic, L., T. Hata, Y. Kurimoto, S. Doi, S. Ishihara and Y. Imamura (2001) Adsorption capacities and related characteristics of wood charcoals carbonized using a one-step or two-step process. J. Wood Sci. 47:48-57. Pütün, E., F. Ateş amd A. E. Pütün (2008) Catalytic pyrolysis of biomass in inert and steam atmospheres. Fuel 87:815-824. Ramiah, M. V. (1970) Thermogravimetric and differential thermal analysis of cellulose, hemicellulose, and lignin. J. Appl. Polym. Sci. 14:1323-1337. Sanders, E. B., A. I. Goldsmith and J. I. Seeman (2003) A model that distinguishes the pyrolysis of D-glucose, D-fructose, and sucrose from that of cellulose. Application to the understanding of cigarette smoke formation. J. Anal. Appl. Pyrolysis 66:29-50. Shen, D. K., S. Gua and A. V. Bridgwater (2010) Study on the pyrolytic behaviour of xylan-based hemicellulose using TG–FTIR and Py–GC–FTIR. J. Anal. Appl. Pyrolysis 87:199-206. Sulaiman, O., R. J. Murphy, R. Hashim and C. S. Gritsch (2005) The inhibition of microbial growth by bamboo vinegar. J. Bamboo Rattan 4(1):71-80. Sun, W. K. C. (1967) Study of a biting midge, Forcipomyia (Lasiohelea) taiwana (Shiraki) (Diptera:Ceratopogonidae). I. Description of the complete life cycle of the midge reared in the laboratory. Biol. Bull. Tunghai Univ., Taiwan, Taichung. 29:1-10. Sun, W. K. C. (1974) Laboratory colonization of biting midges (Diptera:Ceratopogonidae). J. Med. Entomol. 11:73-79. Swamy, P. S. and P. S. Ramakrishnan (1987) Growth and allocation patterns of Mikania micrantha in successional ecvironments after slash and burn agriculture. Can. J. Bot. 66:1465-1469. Wang C., Q. Hao, D. Lu, Q. Jia, G. Li and B. Xu (2008) Production of light aromatic hydrocarbons from biomass by catalytic pyrolysis. Chinese J. Catal. 29(9):907-912. Wild, P. J., H. Uil, J. H. Reith, J. H. A. Kiel and H. J. Heeres (2009) Biomass valorisation by staged degasification A new pyrolysis-based thermochemical conversion option to produce value-added chemicals from lignocellulosic biomass. J. Anal. Appl. Pyrolysis 85:124-133. Williams, P. T. and S. Besler (1996) The influence of temperature and heating rate on the slow pyrolysis of biomass. Renewable Energy 7(3):233-250. Yang, H., R. Yan, H. Chen, D. H. Lee and C. Zheng (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781-1788. Yatagai, M., G. Unrinin and T. Ohira (1988) By-products of wood carbonization IV. Mokuzai Gakkaishi 2(34):184-188. Yatagai, M., M. Nishimoto, K. Hori, T. Ohira and A. Shibata (2002) Termiticidal activity of wood vinegar, its components and their homologues. J. Wood Sci. 48:338-342. Zhang, L., C. Xu and P. Champagne (2010) Overview of recent advances in thermochemical conversion of biomass. Energy Convers. Manage. 51:969-982. Zhbankov, R. G., S. P. Firsov, D. K. Buslov, N. A. Nikonenko, M. K. Marchewka and H. Ratajczakb (2002) Structural physico-chemistry of cellulose macromolecules. Vibrational spectra and structure of cellulose. J. Mol. Struct. 614:117-215. 行政院環境保護署小黑蚊防治推廣中心 (2008) http://www.bitingmidge.org.tw/. International Union for Conservation of Nature (2001) Aliens. http:// www.iucn.org.
摘要: 
為開發入侵植物小花蔓澤蘭(Mikania micrantha Kurth)之用途,本研究以慢速熱解法將小花蔓澤蘭以機械窯在升溫速率100℃/hr,每階段均持溫1 hr下,於150-200℃、200-250℃、250-300℃、300-350℃、350-400℃、400-450℃、450-500℃、500-550℃及550-600℃等溫度範圍分段收集,及在150-350℃和150-600℃等兩種方式一段收集,共得11種小花蔓澤蘭粗醋液,探討其不同最終溫度和不同收集溫度範圍之小花蔓澤蘭粗醋液原液及經76 mmHg及50℃減壓蒸餾後蒸餾醋液之基本性質。此外,並分析由150-350℃收集之小花蔓澤蘭粗醋液稀釋5倍濃度後,對於防治小黑蚊之可行性。試驗結果得知,小花蔓澤蘭之化學組成分中,全纖維素、α-纖維素、木質素、乙醇-甲苯抽出物及灰分含量分別為54.57、35.32、25.22、7.44及9.36%。小花蔓澤蘭粗醋液之基本性質中,以150-600℃分段收集後之總收率達42.63%,且於150-300℃收集者約佔總收率的70%以上,而一段收集者150-350℃之收率為30.31%,150-600℃則為37.09%;又收集溫度高於400℃時,粗醋液pH值均高於8,且顏色會呈現深褐色;有機酸含量以250-300℃者為最高達5.93%;隨著收集溫度的提高,粗醋液之含水率會逐漸減少,而比重和溶解焦油含量則會逐漸增加,並均以550-600℃收集者為最高;將小花蔓澤蘭粗醋液經減壓蒸餾後,所得之蒸餾醋液的比重、有機酸含量和溶解焦油含量均明顯低於粗醋液者,且顏色會呈現澄清透明。小花蔓澤蘭粗醋液之有機成分可鑑定出47種,可分為酸性物質(acidic components)、酚性物質(phenolic components)、含氮物質(nitrogenous components)和中性物質(neutral components)等4大類,在150-350℃和150-600℃ㄧ段收集者,分別以醋酸、酚、吡啶和2-糠醇含量為最多;收集溫度在400-600℃時,其酸性物質的含量會降低,而含氮物質如吡啶和乙腈等衍生物含量則會增加;蒸餾醋液中之150-350℃和150-600℃ㄧ段收集者有機成分仍以醋酸含量為最多,但較大分子量之化合物如2,6-二甲氧基酚(2,6-dimethoxy-phenol)和2-羥基-3-甲基-2-環戊-1-酮(2-hydroxy-3-methyl-2- cyclopenten-1-one)和部份含氮物質則會被去除。以不同濃度之150-350℃收集小花蔓澤蘭粗醋液抑制青苔生長之試驗結果顯示,以小花蔓澤蘭粗醋液原液和稀釋5倍者,均可有效抑制青苔的生長,藉此阻絕小黑蚊幼蟲之食物來源和繁殖,又以稀釋5倍之小花蔓澤蘭粗醋液進行小黑蚊防治之田間試驗,在每週噴灑一次之連續5週內,小黑蚊密度明顯下降,由平均21.3隻減少至5隻以內,防治率和累進防治率分別可達最高之79.33%和90.61%,當停止噴灑醋液後,小黑蚊之數量雖有緩慢回升現象,但仍低於對照組者,綜合以上初步試驗結果,顯示小花蔓澤蘭粗醋液可用於小黑蚊之防治。

For developing the utilization of M. micrantha, the crude vinegars were made from one step and multi-step collecting methods by slow pyrolysis of M. micrantha using a steel kiln at increasing temperature of 100℃/hr and holding for 1 hr in each collecting step. The eleven kinds of M. micrantha crude vinegars were collected under various temperature ranges of 150-200℃, 200-250℃, 250-300℃, 300-350℃, 350-400℃, 400-450℃, 450-500℃, 500-550℃ and 550-600℃ for multi-step collecting and 150-300℃ and 150-600℃ for one step collecting, respectively. The fundamental properties of M. micrantha crude vinegars and distilled vinegars which prepared under the reduced pressure of 76 mmHg at 50℃ as well as the feasibility of controlling the biting midge using a 5 times dilution of M. micrantha crude vinegar which collected from 150-350℃ were examined. The results indicated that the chemical compositions of the M. micrantha were holocellulose of 54.57%, α-cellulose of 35.32%, Klason lignin of 25.22%, alcohol-toluene extractives of 7.44% and ash of 9.36%. The yield of crude vinegar from 150-600℃ multi-step collecting had the highest one of 42.63% and more than above 70% of total yield was collected at the temperature range from 150-300℃. The yields of crude vinegar collected from one step of 150-350℃ and 150-600℃ were 30.31% and 37.09%, respectively. Among the experimented the crude vinegar collected from 250-300℃ had the highest organic acid content of 5.93%, and from 550-600℃ had the lowest water content, the highest specific gravity and soluble tar content. Furthermore, the crude vinegars collected over than above 400℃ had pH value of above 8 and appeared dark-brown color. In addition, the 47 kinds organic components of M. micrantha crude vinegar were identified by GC-MS analysis, and they could be classified into acidic, phenolic, nitrogenous and neutral compounds. Among them, the acetic acid, phenol, pyridine and 2-furanmethanol were the main compounds in the M. micratha crude vinegar from one step collecting of both 150-350℃ and 150-600℃. The acid compounds of M. micratha crude vinegar collected from 400-600℃ decreased, while the nitrogenous compounds, such as pyridine and acetonitrile increased. After distillation under the reduced pressure, the specific gravity, organic acid content and soluble tar content of M. micratha distilled vinegar were lower than those of crude vinegars. The color of M. micratha distilled vinegars were clear and transparent. Moreover, acetic acid was still the main compound in one step collecting under 150-350℃ and 150-600℃. The higher molecular weight compounds, such as 2,6-dimethoxy-phenol, 2-hydroxy-3-methyl-2-cyclopenten-1-one and parts of nitrogenous compounds were removed after distillation. In addition, using different dilutions of M. micratha crude vinegars collecting from 150-350℃ were applied to inhibit the growth of moss, and the results indicated the original and 5 times dilution of M. micratha crude vinegars could effectively inhibit the growth of moss, i.e. inhibit the food sources and breeding of larva of biting midge. Furthermore, a filed experiment for controlling the biting midge with a 5 times dilution of M. micratha crude vinegar collecting from 150-350℃ was also performed. The results indicated that the density of biting midge decreased significantly from number of 21.3 to below 5 within 5 weeks of continuous spraying vinegar once a week. The controlling rate and progressive controlling rate of biting midge was 79.33% and 90.61%, respectively. After 5 weeks and stop spraying vinegar, the number of biting midge increased slowly, but it was still less than that of the control group. From a preliminary test results, the M. micratha crude vinegar could be used as evading agent for controlling the biting midge.
URI: http://hdl.handle.net/11455/66077
Appears in Collections:森林學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.