Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/66098
標題: 蛇木屑-木炭複合板之製造及其於蘭花栽培之應用
Manufacture of Fern Chips - Charcoal Composite Board and Its Application on Orchid Cultivation
作者: 許育民
Xu, Yu-Min
關鍵字: Charcoal;木炭;Gelatin;Fern chips-charcoal composite boards;Phalaenopsis spp.;明膠;蛇木屑;木炭複合板;蝴蝶蘭
出版社: 森林學系所
引用: 尤崇魁 (1996) 蝴蝶蘭栽培技術。園藝世界雜誌社 p.7-84。 王元甫 (2005) 蘭菌與植物生長素對蝴蝶蘭生長與開花之影響。國立台灣大學園藝學研究所碩士論文 pp.80。 王瑞章、孫文章、胡文若、陳俊仁、江汶錦 (2006) 栽培介質對盆栽文心蘭生育與開花品質之影響。台南區農業改良場研究彙報 47:9-16。 李宜映、林海珍 (2007) 國內植物種苗生技之研究發展概況-以蝴蝶蘭為例。植物種苗生技 (9)19-24。 李哖 (1988) 蝴蝶蘭之生長與開花生理。蝴蝶蘭生產改進研討會專集p.21-32。 李嘉慧、李哖 (1991) 台灣蝴蝶蘭根和葉的型態與解剖的特性。 中國園藝. 37: 237-248。 林菁敏 (1983) 溫度、無機養分與栽培介質對蝴蝶蘭生長與開花之影響。國立台灣大學園藝學研究所 碩士論文 pp.71。 易希道 (1998) 最新植物生理學。環球書社 p.58-76。 柯勇 (2002) 植物的礦物營養。植物生理學 p.105-144。 侯德瑩 (2007) 磷肥對文心蘭之生長與切花品質的影響。國立中興大學園藝學研究所 碩士論文 p.1~14。 陳文輝 (2002) 蝴蝶蘭的品種改良。科學發展 351:32-39。 梁崇正 (2002) 明膠的溶膠-凝膠相變化與微乳液-有機凝膠相變化。國立中央大學化學工程與材料工程研究所 碩士論文 pp.82。 張祖亮 (2006) 園藝植物之栽培常識。國立臺灣大學園藝學系。取自:http://ntur.lib.ntu.edu.tw/bitstream/246246/20060927121700445823/1/20060406.pdf 張耿衡、戴廷恩、黃勝忠、曹進義、蔡媦婷、王斐能、張愛華、侯鳳舞 (2006) 人造纖維應用於蝴蝶蘭栽培介質之研究。台灣園藝 52(1):71-80。 張耿衡、蔡隆禾、吳容儀、戴廷恩、謝廷芳 (2007)樹皮作為蝴蝶蘭栽培介質之評估。台灣農業研究 56(3):237-252。 莊作權 (1997) 土壤肥料。三民書局股份有限公司。台北市。P.163~183。 黃詩芳 (2009) 台灣蝴蝶蘭產業發展概況。生物技術開發中心。取自:http://www.itis.org.tw/rptDetailFreeEPaper.screen?rptidno=775083727 黃淑如、王才義 (1994) 容器栽培介質含稻殼、泥炭苔、真珠石、土壤及砂之物理性與化學性。興大園藝 19:81-96。 彭德昌 (1999) 微生物肥料在作物生產之應用。花蓮區農業專訊 30:18-19。 彭穎君、鍾仁賜、何聖賓、張耀乾 (2010) 銨態與硝酸態氮比例影響大白花蝴蝶蘭營養與生殖生長。臺灣園藝 56(1):45-56。 葉淑貞、黃博雄 (2000) 活化速率對研製多孔質纖維及織物性質之影響。紡織中心期刊 10(4):309-316。 楊秋忠 (1993) 土壤與肥料。農世股份有限公司 p.75~116。 楊龍杰 (2003) 微小尺寸下的液體量測與驅動。物理雙月刊 25(3):1-13。 蔡文田、張慶源 (1993) 活性炭及其在空氣污染防治之應用。環境工程會刊 4(2):65-84。 蔡正宏 (2007) 鈣、鉀元素對養液栽培胡瓜‘夏笛’植株生育及果實品質之影響。國立中興大學森林學研究所 碩士論文 pp.90。 蔡淳瑩 (1996) 栽培介質及肥料對四季蘭假球莖增殖之影響。花蓮區研究彙報 17:65-71。 賴思倫 (2005) 培養基活性炭及出瓶後藥劑處理對蝴蝶蘭出瓶苗品質的影響。國立中興大學園藝學 研究所碩士論文 pp.97。 謝建德 (1998) 活性炭孔隙結構與製備條件對液相吸附的影響。私立中原大學化學工程學系研究所 碩士論文 pp.88。 米田和夫 (2007) 蝴蝶蘭。行政院農業委員會。p.54~88。 伊藤真廣 (2007) 栽培介質對蝴蝶蘭生長及模擬貯運後生長之影響。國立中興大學園藝學研究所 碩士論文 pp.110。 窪田 聡、加藤 哲郎、 米田 和夫 (1993) ファレノプシスの生育におよぼす施肥ならびにミズゴケと素焼鉢の理化学性の影響。園芸學會雜誌 62(3):601-609。 Berglund, L. M., T. H. DeLuca and O. Zackrisson (2004) Activated carbon amendments of soil alters nitrification rates in Scots pine forests. Soil Biol. Biochem. 36: 2067–2073. Bernier, G., J. M. Kinet and R. M. Sachs (1981) Applied aspects of floral initiation and development. The Physiology of Flowering 3:203-230. Cao, N., Y. and Fu, J. He (2007) Mechanical properties of gelatin films cross-linked, respectively, by ferulic acid and tannin acid. Food Hydroc. 21:575-584. Chambi, H. and C. Grosso (2006). Edible films produced with gelatin and casein cross-linked with transglutaminase. Food Res. In. 39(4):458–466. Chan, W. C. R., M. Kelbon and B. B. Krieger (1985) Modelling and experimental verification of physical and chemical processes during pyrolysis of a large biomass particle. Fuel 64:1505-1513. Chiou, B.-S., R. J. Avena-Bustillos, P. J. Bechtel, H. jafri, R. Narayan, S. H. Imam, G. M. Glenn and W. J. Orts (2008) Cold water fish gelatin films: effects of crosslinking on thermal, mechanical, barrier, and biodegradation properties. Eur. Polym. J. 44: 3748–3753. Chiou, B.-S., R. J. Avena-Bustillos, P. J. Bechtel, S. H. Imam, G. M. Glenn and W. J. Orts (2009) Effects of drying temperature on barrier and mechanical properties of cold-water fish gelatin films. J. Food Eng. http://www.elsevier.com/locate/jfoodeng. Dumas E. and O. Monteuuis (1995). In vitro rooting of micropropagated shoots from juvenile and mature Pinus pin¬aster explants – influence of activated charcoal. Plant Cell, Tissue and Organ Culture. 40: 231-235. Eymar, E., J. Alegre, M. Toribio and D. L′opez-Vela (2000) Effect of activated charcoal and 6-benzyladenine on in vitro nitrogen uptake by Lagerstroemia indica. Plant Cell, Tissue and Organ Cult. (63):57-65. Fitzer, E., E. K. H. Köchling, H. P. Boehm and H. Marsh (1995) Recommended terminology for the description of carbon as a solid. Pure Appl. Chem. 67: 473. Gundale, M. J. and T. H. DeLuca (2006a) Charcoal effects on soil solution chemistry and growth of Koeleria macrantha in the Ponderosa pine/Douglas-fir ecosystem. Biol. Fertil. Soils 43:303-311. Gundale, M. J. and T. H. DeLuca (2006b) Temperature and source material influence ecological attributes of Ponderosa pine and Douglas-fir charcoal. Forest Ecol. 231:86-93. Ket, N. V., E. J. Hahn, S. Y. Park, D. Chakrabarty and K. Y. Peak (2004) Micropropagation of an endangered orchid Anoectochilus formosanus. Biol. Plant. 48(3):339-344. Kozlov, P. V. and G. I. Burdygina (1983) The structure and properties of solid gelatin and the principles of their modification. Polymer 24: 651–666. MacDonald, D. C. (1977) Methods of soil and tissue analysis used in the analytical laboratory. Canadian forest service information report. MM-X-78. Mackenzie, M. D. and T. H. DeLuca (2006) Charcoal and shrubs modify soil processes in Ponderosa pine forests of western Montana. Plant soil 287: 257-266. Olsen, S. R. and L. E. Sommers (1982) Phosphorus. In: A. L. Page et al. (eds.) Methods of soil analysis. Part 2. 2nd ed. Agronomy 9:403-427. Pastor-Villegas, J., J. F. Pastor-Valle, J. M. Meneses Rodrı′guez and M. Garcı′a (2006) Study of commercial wood charcoals for the preparation of carbon adsorbents. J. Anal. Appl. Pyrolysis 76:103-108. Rhoades, J. D. (1982) Cation exange capacity. In A. L. Page et al. (eds.) Methods of soil analysis, Part 2.2nd ed. Agronomy 9:149-157. Sjöström, E. (1993) Wood chemistry:fundamentals and applications. 2nd ed. Academic Press, New York. p.234. Thomas, T. D. and A. Michael (2007) High-frequency plantlet regeneration and multiple shoot induction from cultured immature seeds of Rhynchostylis retusa Blume., an exquisite orchid. Plant Biotechnol. Rep. 1:243-249. Van Waes, J. M. and P. C. Debergh (1986) In vitro germination of some Western European orchids. Physiol. Plant. 67:253–261. Yan, N., H. Hu, J. L. Huang, K. Xu, H. Wang and Z. K. Zhou (2006) Micropropagation of Cypripedium flavum through multiple shoots of seedlings derived from mature seeds. Plant Cell, Tissue and Organ Cult. 84:113-117.
摘要: 
本研究使用市售蛇木屑(fern chips)及炭化溫度500℃,直徑3.36~13.5 mm之相思樹(Acacia confusa)及柳杉(Cryptomeria japonica)木炭,分別依蛇木屑/木炭配比為100/0、90/10、80/20及70/30重量比及20、30及40%用量之濃度20%濃度明膠作為膠合劑,製造蛇木屑-木炭複合板。除分析蛇木屑-木炭複合板之基本性質、充氣孔隙度 (air-filled porosity, AFP)、容器容水量 (container capacity, CC) 及總孔隙度 (total porosity, TP)外,並應用於蝴蝶蘭(Phalaenopsis spp.)之培養,探討不同條件蛇木屑-木炭複合板對蝴蝶蘭生長效應。研究結果顯示,蛇木屑-木炭複合板之密度為0.2 g/cm3,pH值介於4.86~5.69間,適合蝴蝶蘭之栽培。不同條件之蛇木屑-相思樹及柳杉木炭複合板者,均以木炭配比為80/20、明膠用量40%者有最高之內聚強度。而在相同條件下,含相思樹木炭複合板之內聚強度皆高於柳杉木炭者。在不同木炭配比之複合板,若不考慮明膠用量,除蛇木屑-柳杉木炭複合板之AFP值外,其餘條件下以木炭配比為80/20者之AFP、CC及TP者均有較佳之情形,而不同明膠用量對AFP無明顯之影響。在蝴蝶蘭栽培試驗,相思木炭及柳杉木炭複合板均以木炭加量80/20、明膠用量40%者有較快之新葉生長速率及較多新葉片數,且皆較市售蛇木板者為佳。又在相同條件下含相思木炭複合板對新葉生長速率及新葉數則較含柳杉木炭者為佳。

In this study, the fern chips-charcoal composite boards were made from commercial fern chips and the Acacia confusa or Cryptomeria japonica charcoal by the the weight ratios of 100/0, 90/10, 80/20 and 70/30, respectively. The A. confusa and C. japonica charcoal were obtained from charcoalization at 500oC and with the diameter of 3.36 ~ 13.5 mm. The 20% concentration of gelatin solution was used as the adhesive and the dosage were 20, 30 and 40% by the total weight of fern chips and charcoal. The fundamental properties, air-filled porosity (AFP), container capacity (CC), and total porosity (TP) of the fern chips - charcoal composite boards as well as the effect of cultivating Phalaenopsis spp. on different manufacturing conditions of the composite boards were examined. The results showed that fern chips - charcoal composite boards had the density of 0.2 g/cm3 and pH value of 4.86~5.69. There are suitable for cultivating Phalaenopsis spp. The fern chips - charcoal composite boards with fern chips/charcoal = 80/20 and the 40% dosage of gelatin had the highest internal bonding strength. Furthermore, at the same conditions, the internal bonding strength of the fern chips - charcoal composite board with A. confusa charcoal was larger than that of C. japonica charcoal one. Except the AFP of the fern chips - charcoal composite board with C. japonica charcoal, the composited board with 80/20 ratio had the best AFP, CC and TP without consideration of dosage of gelatin. And the result also found that the performance of AFP was independent on the dosage of the gelatin solution. In the cultivating experiment of orchid, comparing with the commercial fern chips board, the fern chips - charcoal composite boards with fern chips/A. confusa or C. japonica charcoal of 80/20 and 40% of gelatin, had the best growth rate and numbers of new leaves. In addition, at the same conditions, the fern chips - charcoal composite boards containing A. confusa charcoal had better growth rate and numbers of new leaves than the one with C. japonica charcoal.
URI: http://hdl.handle.net/11455/66098
Appears in Collections:森林學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.