Please use this identifier to cite or link to this item:
標題: 液化柳杉為基質PU發泡體醇解產物之製備及應用
Preparation and Application of Glycolysis Products from Liquefied Japanese cedar Based-PU Foams
作者: 蘇昱良
Su, Yu-Liang
關鍵字: Adhesion;膠合;Coating;Glycolysis products;Liquefied Cryptomeria japonica;Polyurethane resins;Resin films;塗裝;醇解產物;液化柳杉;聚胺基甲酸酯樹脂;樹脂薄膜
出版社: 森林學系所
引用: 1. 吳曉旋、吳秋昌、李文昭 (2008) 界面活性劑種類及添加量對多元醇液化柳杉木材製造聚胺基甲酸酯(PU)發泡體之影響。林業研究季刊 30(4):65-76。 2. 李文昭、劉正字 (2004) 不同樹種樹皮單寧之分子量大小及分佈範圍。林業研究季刊 26(3):33-48。 3. 李文昭、阮幼梅 (2009) 多元醇液化柳杉木材及樹皮之性質及其在硬質PU發泡體製造之應用。中華林學季刊 42(1):137-150。 4. 張上鎮、吳季玲、王升陽、張惠婷 (1998) 木粉濃度與顆粒大小對木材散反射傅立葉轉換紅外線光譜分析之影響。台灣林業科學 13(1):11-18。 5. Akdeniz, F. and M. Gündoğdu (2007) Direct and alkali medium liquefaction of Laurocerasus officinalis Roem. Energy Convers. Manage. 48:189-192. 6. Alfani, R., S. Iannace and L. Nicolais (1998) Synthesis and characterization of starch-based polyurethane foams. J. Appl. Polym. Sci. 68:739-745. 7. Araújo, R. C. S., V. Márcia, D. Pasa and B. N. Melo (2005) Effects of biopitch on the properties of flexible polyurethane foams. Eur. Polym. J. 41:1420-1428. 8. Bakirova, I. N., V. I. Vluev, I. G. Demchenko and L. A. Zenitova (2002) Chemical structure and molecular mass characteristics of products in the glycolysis of a flexible poly(urethane) foam. J. Polym. Sci., Part A: Polym. Chem. 44(6):615-622. 9. Begum, M. and Siddaramaiah (2004) Synthesis and characterization of polyurethane/polybutyl methacrylate interpenetrating polymer networks. J. Mater. Sci. 39:4615-4623. 10. Beneš, H., J. Rösner, P. Holler, H. Synková, J. Kotek and Z. Horák (2007) Glycolysis of flexible polyurethane foam in recycling of car seats. Polym. Adv. Technol. 18:149-156. 11. Borda, J., G. Pásztor and M. Zsuga (2000) Glycolysis of polyurethane foams and elastomers. Polym. Degrad. Stab. 68:419-422. 12. Campbell, G. A. and W. C. Meluch (1976) Polyurethane foam recycling superheated steam hydrolysis. Environ. Sci. Technol. 10(2):182-185. 13. Ciobanu, C., M. Ungureanu, L. Ignat, D. Ungureanu and V. I. Popa (2004) Properties of lignin–polyurethane films prepared by casting method. Ind. Crops Prod. 20:231-241. 14. Dai, Z., B. Hatano, J. Kadokawa and H. Tagaya (2002) Effect of diaminotoluene on the decomposition of polyurethane foam waste in superheated water. Polym. Degrad. Stab. 76:179-184. 15. Demirbaş, A. (2000) Effect of lignin content on aqueous liquefaction products of biomass. Energy Convers. Manage. 41:1601-1607. 16. Doh, G. H., S. Y. Lee, I. A. Kang and Y. T. Kong (2005a) Thermal behavior of liquefied wood polymer composites (LWPC). Compos. Struct. 68:103-108. 17. Doh, G. H., I. A. Kang, S. Y. Lee, Y. T. Kong, C. S. Jeong and B. S. Lim (2005b) Mechanical properties and creep behavior of liquefied wood polymer composites (LWPC) Compos. Struct 68:225-233. 18. Dominguez-Rosadoa, E., J. J. Liggata, C. E. Snapeb, B. Elingc and J. Pichteld (2002) Thermal degradation of urethane modified polyisocyanurate foams based on aliphatic and aromatic polyester polyol. Polym. Degrad. Stab. 78:1-5. 19. Fukaya, T., H. Watando, S. Fujieda, S. Saya, C. M. Thai and M. Yamamoto (2006) Reheating decomposition process as chemical recycling for rigid polyurethane foam. Polym. Degrad. Stab. 91:2549-2553. 20. Haseth, J. A. de, J. E. Andrews, J. V. McClusky, R. D. Priester, M. A. Harthcock, and B. L. Davis (1993) Characterization of polyurethane foams by mid-infrared fiber/FT-IR spectrometry. Appl. Spectrosc. 47:(2)173-179. 21. Hassan, B., M. Kim and H. Wan (2009) Phenol–formaldehyde-type resins made from phenol-liquefied wood for the bonding of particleboard. J. Appl. Polym. Sci. 112: 1436-1443. 22. Herrera, M., G. Matuschek and A. Kettrup (2002) Thermal degradation of thermoplastic polyurethane elastomers (TPU) based on MDI. Polym. Degrad. Stab. 78:323-331. 23. Jeong, H. M., B. K. Kim and Y. J. Choi (2000) Synthesis and properties of thermotropic liquid crystalline polyurethane elastomers. Polymer 41:1849-1855. 24. Juhaida, M. F., M. T. Paridah, M. Mohd. Hilmi, Z. Sarani, H. Jalaluddin and A. R. Mohamad Zaki (2010) Liquefaction of kenaf (Hibiscus cannabinus L.) core for wood laminating adhesive. Bioresour. Technol. 101:1355-1360. 25. Krämer, R. H., M. Zammarano, G. T. Linteris, U. W. Gedde and J. W. Gilman (2010) Heat release and structural collapse of flexible polyurethane foam. Polym. Degrad. Stab. 95:1115-1122. 26. Kunaver, M., S. Medved, N. Čuk, E. Jasiukaitytė, I. Poljanšek and T. Strnad (2010) Application of liquefied wood as a new particle board adhesive system. Bioresour. Technol. 101:1361-1368. 27. Kurimoto, Y., S. Doi and Y. Tamura (1999) Species effects on wood-liquefaction in polyhydric alcohols. Holzforschung 53(6):617-622. 28. Kurimoto, Y., M. Takeda, A. Koizumi, S. Yamauchi, S. Doi and Y. Tamura (2000) Mechanical properties of polyurethane films prepared from liquefied wood with polymeric MDI. Bioresour. Technol. 74:151-157. 29. Kurimoto, Y., A. Koizumi, S. Doi, Y. Tamura and H. Ono (2001a) Wood species effects on the characteristics of liquefied wood and the properties of polyurethane films prepared from the liquefied wood. Biomass Bioenergy 21:381-390. 30. Kurimoto, Y., M. Takeda, S. Doi, Y. Tamura and H. Ono (2001b) Network structures and thermal properties of polyurethane films prepared from liquefied wood. Bioresour. Technol. 77:33-40. 31. Lavall, R. L., S. Ferrari, C. Tomasi, M. Marzantowicz, E. Quartarone, A. Magistris, P. Mustarelli, S. Lazzaroni and M. Fagnoni (2010) Novel polymer electrolytes based on thermoplastic polyurethane and ionic liquid/lithium bis(trifluoromethanesulfonyl)imide/propylene carbonate salt system. J. Power Sources 195:5761-5767. 32. Laza, J. M., J. L. Vilas, M. T. Garay, M. Rodriguez and L. M. Leon (2005) Dynamic mechanical properties of epoxy-phenolic mixtures. J. Polym. Sci. Part B : Polymer Physics 43: 1548-1555. 33. Lee, S. H., T. Ohkita and Y. Teramoto (2005) Polyol recovery from biomass-based polyurethane foam by glycolysis. J. Appl. Polym. Sci. 95:975-980. 34. Lefebvre, J., S. Duquesne, V. Mamleev, M. L. Bras and R. Delobel (2003) Study of the kinetics of pyrolysis of a rigid polyurethane foam: use of the invariant kinetics parameters method. Polym. Adv. Technol. 14:796-801. 35. Lefebvre, J., B. Bastin, M. L. Bras, S. Duquesne, R. Paleja and R. Delobel (2005) Thermal stability and fire properties of conventional flexible polyurethane foam formulations. Polym. Degrad. Stab. 88:28-34. 36. Lu, Y. and R. C. Larock (2010) Soybean oil-based, aqueous cationic polyurethane dispersions: Synthesis and properties. Prog. Org. Coat. 69:31-37. 37. Mansanray, K. G. and A. E. Ghaly (1998) Thermal degradation of rice husks in nitrogen atmosphere. Bioresour. Technol. 65:13-20. 38. Molero, C., A. de Lucas and J. F. Rodríguez (2006a) Recovery of polyols from flexible polyurethane foam by ‘‘split-phase’’ glycolysis: Glycol influence. Polym. Degrad. Stab. 91:221-228. 39. Molero, C., A. de Lucas and J. F. Rodríguez (2006b) Recovery of polyols from flexible polyurethane foam by ‘‘split-phase’’ glycolysis with new catalysts. Polym. Degrad. Stab. 91:894-901. 40. Molero, C., A. de Lucas and J. F. Rodríguez (2008a) Recovery of polyols from flexible polyurethane foam by ‘‘split-phase’’ glycolysis: Study on the influence of reaction parameters. Polym. Degrad. Stab. 93:353-361. 41. Molero, C., A. de Lucas, F. Romero and J. F. Rodríguez (2008b) Influence of the use of recycled polyols obtained by glycolysis on the preparation and physical properties of flexible polyurethane. J. Appl. Polym. Sci.109:617–626. 42. Molero, C., A. de Lucas and J. F. Rodríguez (2009) Activities of octoate salts as novel catalysts for the transesterification of flexible polyurethane foams with diethylene glycol. Polym. Degrad. Stab. 94:533-539. 43. Nayak, P., D. K. Mishra, D. Parida, K. C. Sahoo, M. Nanda, S. Lenka and P. L. Nayak (1995) Polymers from renewable resources. IX. Interpenetrating polymer networks based on castor oil polyurethane poly(hydroxyethyl methacrylate) : synthesis, chemical, thermal, and mechanical properties. J. Appl. Polym. Sci. 63:671-679. 44. Paabo, M. and B. C. Levin (1987) A review of the literature on the gaseous products and toxicity generated from the pyrolysis and combustion of rigid polyurethane foams. Fire Mater. 11:1-29. 45. Pan, H., T. F. Shupe and C. Y. Hse (2007) Characterization of liquefied wood residues from different liquefaction condition. J. Appl. Polym. Sci. 105:3739-3746. 46. Peizhong, Z., H. Xingyan, W. Yuansheng, Z. Jinhua and W. Qingzhen (2007) Structure and properties of polyurethane elastomer cured in graded temperature field. Mater. Sci. Eng., A 457:231-235. 47. Pielichowski, K., K. Kulesza and E. M. Pearce (2003) Thermal degradation studies on rigid polyurethane foams blown with pentane. J. Appl. Polym. Sci. 88:2319-2330. 48. Radenkov, Ph., M. Radenkov, G. Grancharov and K. Troev (2003) Direct usage of products of poly(ethylene terephthalate) glycolysis for manufacturing of glass-fibre-reinforced plastics. Eur. Polym. J. 39:1223-1228. 49. Ravey, M. and E. M. Pearce (1997) Flexible polyurethane foam. I. Thermal decomposition of a polyether-based, water-blown commercial type of flexible polyurethane foam. J. Appl. Polym. Sci. 63:47-74. 50. Rivera-Armenta, J. L., Th. Heinze and A. M. Mendoza-Martínez (2004) New polyurethane foams modified with cellulose derivatives. Eur. Polym. J. 40:2803-2812. 51. Wang, J., D. Chen, and Q. Zhang (2007) Analysis of glycolysis products of polyurethane fiber waste with diethylene glycol. Fibers Polym. 8(1):13-18. 52. Wu, C. H., C. Y. Chang and J. K. Li (2002) Glycolysis of rigid polyurethane from waste refrigerators. Polym. Degrad. Stab. 75:413-421. 53. Yamada, T. and H. Ono (1999) Rapid liquefaction of lignocellulosic waste by using ethylene carbonate. Bioresour. Technol. 70:61-67. 54. Yamada, T. and H. Ono (2001) Characterization of the products resulting from ethylene glycol liguefaction of cellulose. J. Wood Sci. 47:458-464. 55. Yao, Y., M. Yoshioka and N. Shiraishi (1995) Rigid polyurethane foams from combined liquefied mixtures of wood and starch. Mokuzai Gakkaishi 41(7): 659-668. 56. Yao, Y., M. Yoshioka and N. Shiraishi (1996) Water-absorbing polyurethane foams from liquefied starch. J. Appl. Polym. Sci. 60: 1939-1949. 57. Yilgor, I., E. Yilgor, I. G. Guler, T. C. Ward and G. L. Wilkes (2006) FTIR investigation of the influence of diisocyanate symmetry on the morphology development in model segmented polyurethanes. Polymer 47:4105–4114. 58. Zia, K. M., H. N. Bhatti and I. A. Bhatti (2007) Methods for polyurethane and polyurethane composites, recycling and recovery: A review. React. Funct. Polym. 67:675-692.
本研究將柳杉 (Cryptomeria japonica; Japanese cedar) 木材以聚乙二醇/丙三醇為液劑,硫酸為催化劑進行液化處理,所得液化柳杉與4,4-二苯甲烷二異氰酸酯之寡聚物 (PMDI) 反應製作PU發泡體,再將此PU發泡體以二乙二醇 (Diethylene glycol; DEG) 為溶劑,二乙醇胺 (Diethanolamine; DEA) 為催化劑進行醇解反應,並將所得醇解產物與液化柳杉以不同重量比混合做為多元醇原料,探討其與異氰酸酯Desmodur N或Desmodur L之反應性,及其應用於PU樹脂薄膜、膠合劑、塗料製作之可行性。由試驗結果得知,液化柳杉為基質之PU發泡體添加DEG溶劑及DEA催化劑,經190℃加熱100 min可得低黏度、高羥價之液態醇解產物,此醇解產物可單獨或混合液化柳杉後與異氰酸酯反應再製PU樹脂;DSC分析顯示醇解產物之反應性大於液化柳杉,與異氰酸酯Desmodur L之反應性大於Desmodur N;硬化PU樹脂之DMA分析顯示異氰酸酯可同時與醇解產物及液化柳杉反應形成三次元網狀結構而無相分離現象。將醇解產物/液化柳杉混合液做為多元醇原料製作PU樹脂薄膜時,以Desmodur N為異氰酸酯原料者有較大之薄膜破壞伸長率,以Desmodur L為原料者則有較高之破壞應力,在醇解產物/液化柳杉重量比50/50時其PU樹脂薄膜有較佳之耐溶劑重量保留率;TGA熱重分析顯示增加醇解產物混合比可提高PU樹脂之耐熱性。醇解產物/液化柳杉與Desmodur L所調配PU樹脂對木材具有良好的常態、耐溫水浸水及耐反覆煮沸浸水之膠合強度,與Desmodur N混合調配者則在較高醇解產物添加量條件下有較佳之膠合性能。醇解產物/液化柳杉混合物可做為PU塗料之多元醇原料,將其與Desmodur L混合調配者有較佳之塗膜硬度及耐磨耗性,與Desmodur N混合調配者則有較佳之塗膜抗彎曲性及附著性。

In this study, Cryptomeria japonica (Japanese cedar) was liquefied in polyethylene glycol/glycerol with H2SO4 as a catalyst. The liquefied Japanese cedar was mixed with polymeric poly-4,4''-diphenylmethane diisocyanate (PMDI) to make polyurethane (PU) foams. The glycolysis of these PU foams was conducted in diethanol glycol (DEG) with diethanol amine (DEA) as a catalyst. The glycolysis products were blended with liquefied Japanese cedar with various weight ratios and mixed with isocyanate (Desmodur N and Desmodur L) to re-produce PU resins. The reactivity of various PU resins and the feasibility for them to manufacture PU films, adhesives and coatings were investigated. The results shows that glycolysis of liquefied Japanese cedar based-PU foams could be conducted with solvent of DEG and catalyst of DEA at 190℃ for 100 min to obtain a low viscosity and high hydroxyl value product. The glycolysis product could be used along or blending with liquefied Japanese cedar to re-produce PU resins when mixed with isocyanate. DSC analysis shows that the glycolysis product had higher reactivity than liquefied Japanese cedar; and mixing with Desmodur L had higher reactivity than with Desmodur N. DMA analysis of cured PU resins shows that isocyanate could react with glycolysis products and liquefied Japanese cedar simultaneously, and formed a three-dimensional network structure without phase separation. When mixtures of glycolysis products and liquefied Japanese cedar were used as the component of polyol to make PU films, using Desmodur N as the isocyanate had larger elongation, but using Desmodur L had higher stress. The PU films made with the weight ratio of glycolysis product to liquefied Japanese cedar as 50/50 had the best solvent resistance. TGA analysis shows that increasing the weight ratio of glycolysis product could increase the thermo-stability of cured PU resins. PU resins prepared by mixing glycolysis product/ liquefied Japanese cedar with Desmodur L had good bonding strength that included the dry, warm water soaked and repetitive boiling water soaked treatment. However, when mixed with Desmodur N, using a higher ratio of glycolysis product had better bonding strength. The mixtures of glycolysis product/ liquefied Japanese cedar could be used as the polyols for PU coatings. When mixing them with Desmodur L, the coatings had better hardness and abrasion resistance; but they had better bending resistance and adhesion when mixed with Desmodur N.
Appears in Collections:森林學系

Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.