Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/66109
標題: 奈米纖維素製備、分析與其共混奈米絹雲母對聚乳酸薄膜性能改善之研究
Preparation and characterization of Nanocrystalline Cellulose and the Effects of its Compounding with Nano-sericite on the Property Improvements of Polylactic Acid Composite Films.
作者: 章之平
Chang, Chih-Ping
關鍵字: 棉漿;cotton linter;奈米纖維素;硫酸水解;13C固態核磁共振;熱重分析;聚乳酸;奈米纖維素;奈米絹雲母;紫外光穿透率;nanocrystalline cellulose;sulfuric acid hydrolysis;13C solid state nuclear magnetic resonance;thermo-gravimetric analysis;polylactic acid;nanocrystalline cellulose;nanosericite;UV transmittance
出版社: 森林學系所
引用: 于達元(2007)濃度對介質研磨纖維素流變性質的影響。台灣大學食品科技研究所碩士論文76頁。 王能、丁恩勇、程鎔時(2006)奈米微晶表面改性研究。高分子學報(8):982–987。 王希國、楊謙(2008)梅林青黴Z18纖維素酶降解纖維素的研究。哈爾濱工業大學學報140(16):919–922。 王淑花、魏麗喬等(2005)抗菌ABS奈米複合材料的研究及應用。 工程塑料應用33(6):8–10。 王耀群 (2007) 以分子動力學結合耗散粒子動力學法觀察不同比例PE與PLLA高分子混合後之奈米結構。國立中山大學機械與機電工程學系碩士論文94頁。 孔令照、李光明、賀文智、徐竟成、王華(2007)微晶纖維素水熱降解的液化產物分佈。遼寧石油化工大學學報27(3):25–28。 江明峰(2003)聚乳酸/蒙脫土奈米複合材料之製備與物性研究。國立中興大學材料工程學研究所碩士論文125頁。 江俊杰 (2001) 尼龍6/二氧化矽奈米複合材料之製備及物性分析。國立中興大學化學工程系碩士論文109頁。 李培耀、宋國君、元峰、王立(2006)奈米纖維素晶鬚及其在奈米複合材料中的應用進展。現代化工(26):96–99。 李宛茜(2004)茭白筍外殼補強複合材料之製作及分析。國立中興大學化學工程學系碩士論文71頁。 宋杰、侯永發 (1995) 微晶纖維素的性質與應用。纖維素科學與技術 3(3): 1–10。 李常勝、李從舉、付中玉、常敏、李小寧(2007)靜電紡PLA微/納米纖維膜的浸潤性能研究。合成纖維工業34(6):5–7。 李國源(2007)生物可分解性聚乳酸之特性、應用及分解。大同大學生物工程研究所碩士論文113頁。 李衛東、郭瑞、原小平、陳飛、丁恩勇(2006)奈米纖維素接枝PET 纖維織物的製備和表徵。纖維素科學與技術14(4):27–30。 何建新、唐予遠、王善元(2008)醋酸纖維素的結晶結構與熱性能。紡織學報29(10):12–16。 余能凱(2005)聚乳酸奈米複合材料之結晶型態與其分子間作用力。萬能科技大學工程科技研究所碩士論文117頁。 吳振森(2001)微晶纖維素的製程因子對其材質與機械性能及應用功能性的影響。台北醫藥大學藥學研究所博士論文119頁。 吳敬謙(2004)懸掛式固定化纖維酵素反應器之廢紙纖維素水解與醣類產物分析。私立中原大學化學系碩士論文94頁。 林志光(2002)聚苯乙烯/蒙脫土奈米複合材料之合成與性質研究。中原大學化學研究所碩士論文78頁。 袁毅、張黎明、高文遠(2007)穿龍薯蕷微晶纖維素的製備及其理化性質研究。生物質化學工程41(4):22–26。 許銘欽(2007)滑石粉表面修飾對聚乳酸結晶行為之影響。東海大學化工系碩士論文107頁。 陳育如、夏黎明、吳綿斌、岑沛霖(1999)植物纖維素原料預處理技術的研究進展。化工進展18(4):24–27。 陳時欣(2005)蔗糖酯對奈米/次微米纖維素懸浮液穩定性之研究。國立臺灣大學。食品科學研究所碩士論文89頁。 陳勃怡、雷大同、蔡印來(2005)向陽絹雲母礦之礦物分佈研究。資源與環境學術研討會。花蓮。 張馨云(2008)酸水解法製備多醣奈米結晶粒子之研究。台灣大學農業化學研究所碩士論文69頁。 梁博(2007)聚乳酸合成方法研究進展。石油化工應用26(5):1–3。 童昕、唐濤、朱甯、馮之榴、黃葆同(2002)利用聚合物乳液合成聚甲基丙烯酸甲酯/二氧化矽奈米雜化材料。高等學校化學學報 23(2):306–309。 葉書吉(2007)有機蒙脫土對聚乳酸結晶行為影響之研究。東海大學化工系碩士論文270頁。 葉代勇(2007)奈米纖維素的製備。化工進展19(10):1568–1575。 劉富弘(2007)纖維直徑與微結構對聚丙烯穿晶形成能力的影響。成功大學化學工程系碩士論文104頁。 劉軍輝、張軍、李楓(2005)苯乙烯-丙烯酸丁酯/蒙脫土奈米複合材料的阻燃性。高分子材料與工程21(4):156–159。 趙明煜(2004)奈米纖維製備方法之研究。台灣大學食品科技研究所碩士論文110頁。 甄文娟、單志華(2008)奈米纖維素在綠色複合材料中的應用研究。現代化工28(6):85–88。 黎國康、丁恩勇、李小芳、姜勇(2002)奈米晶體纖維素Ⅱ的製備與表徵研究。纖維素科學與技術10(2):12–19。 羅素娟(1997)甘蔗渣微晶纖維素的研製。廣西化工26(3):4–7。 羅素娟(1998)淺談微晶纖維素的生產和製備過程。廣西化纖通訊l(2):26–28。 謝文展(2007) 絹雲母奈米級製程開發。 大葉大學環境工程學系碩士論文112頁。 Adebajo MO, Frost RL, Kloprogge JT, Kokot S. 2005. Raman spectroscopic investigation of acetylation of raw cotton. Spectrochimica Acta Part A 64 : 448-453. Ago M, Endo T, Hirotsu T. 2004. Crystalline transformation of native cellulose from cellulose I to cellulose II polymorph by a ball-milling method with a specific amount of water. Cellulose 11:163-167. Andresen M, Johansson LS, Tanem BS, Stenius P. 2006. Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13(6):665-677. Atalla RH, Vanderhart DL. 1984. Native Cellulose: A Composite of Two Distinct Crystalline Forms. Science 20 (223):283-285. Atalla RH. 1993. The structures of native celluloses. in Suominen P. Reinikainen T. editors. Trichoderma reesei cellulases and other hydrolases, Espoo: Foundation for Biotechnical and Industrial Fermentation Research 8:25-39. Atalla RH. 2007. Nanoscale nucleation of celluloses in the cellulose I form during isolation, regeneration and in cellulose IV. TAPPI 2007 international conference on nanotechnology for the forest products industry. Knoxville, TN June 13 -15, 2007. Baird MS, O’ Sullivan AC. 1998. A native cellulose model. Cellulose 5:80-111. Beck–Candanedo S, Roman M, Gray DG. 2005. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6(2):1048-1054. Bondeson D, Mathew A, Oksman K. 2006. Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171-180. Chen XM, Burger C, Fang DF, Ruan D, Zhang L Hsiao BS, Chu B. 2006. X-ray studies of regenerated cellulose fibers wet spun from cotton linter pulp in NaOH/thiourea aqueous solutions. Polymer 47:2839-2848. Cheng Q, Wang SQ, Rials TG, Lee SH. 2007. Physical and mechanical properties of polyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulose fibers. Cellulose 14(6):593-602. Choi Y, Simonsen J. 2006. Cellulose nanocrystal–filled carboxy methyl cellulose nanocomposites. J. Nanosci and Nanotech 6(3):633-639. Coltthup NB, Daly LH, Wiberley SE. 1964. Introduction to infrared and raman spectroscopy. Academic Press, New York, 1964, pp. 409. Das K, Ray D, Bandyopadhyay NR, Ghosh T, Mohanty AK, Misra M. 2009. A study of the mechanical, thermal and morphological properties of microcrystalline cellulose particles prepared from cotton slivers using different acid concentrations. Cellulose 16:783-793. Dong XM, Revol JF, Gray DG. 1998. Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19-32. Elazzouzi–Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F. Rochas C. 2008. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9(1):57-65. Ek R, Alderborn G, Nyström C. 1994. Particle analysis of microcrystalline cellulose: differentiation between individual particles and their agglomerates. Int J Pharm 111:43-50. Essawy HA, Nourelhoda A, Abd EW, Mahmoud A, Abd EG. 2008. PVC–laponite nanocomposites: Enhanced resistance to UV radiation. Polym Degrad Stab 93:1472–1478. Fabrizio P, Be´due´ O, Chanzy H, Heux L. 2007. Solid-state 13C NMR study of Na-cellulose complexes. Biomacromolecules 8:2586-2593. Favier V, Canova GR, Cavaille JY, Chanzy H, Dufresne A, Gauthier C. 1995. Nanocomposite materials from latex and cellulose whiskers. Polym Advan Technol 6(5):351-355. Filpponen I, Wang XW, Lucia LA, Argyropoulos DS. 2007. Effect of reaction conditions on the formation and thermal behavior of cellulose nanocrystals. 2007 International Conference on Nanotechnology For the Forest Products Industry13-15 June Knoxville, Tennessee, USA. Gindl W, Keckes J. 2005. All-cellulose nanocomposite. Polymer 46:10221-10225. Gousse´ C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E. 2002. Stable suspensions of partially silylated cellulose whiskers in organic solvents. Polymer 43:2645-2651. Gray DG. 2008. Transcrystallization of polypropylene at cellulose nanocrystal surfaces. Cellulose 15:297-301. Grunert M. 2002. Cellulose Nanocrystals: Preparation, surface modification, and application in nanocomposites. Ph D. Dissertation of State University of New York. Gümüşkaya E, Usta M, Balaban M. 2007. Carbohydrate components and crystalline structure of organosolv hemp (Cannabis sativa L.) bast fibers pulp. Bioresource Technol. 98:491-497. Habibi Y, Chanzy H, Vignon MR. 2006. TEMPO–mediated surface oxidation of cellulose whiskers. Cellulose 13:679-687. Hai L, Kang WG, Huang M, Ding D, Xu X. 2004. Mechanochemical modification and application of two-dimension sericite flaky nano-materials. J Univ Sci Technol B. 25(6):627-630. [in Chinese with English summary] Henton DE, Gruber P, Lunt J, Randall J. 2005. In: Mohanty A.K., Misra M. Drzal LT. editors. Natural Fibers, Biopolymers, and Biocomposites. Florida: Taylor & Francis Group. P 538-547. Herrick FW, Casebier RL, Hamilton JK, Sandberg KR. 1983. Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci 37:797-813. Heux L, Chauve G, Bonini C. 2000. Nonflocculating and chiral–nematic self–ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16 (21):8210-8212. Hubbe MA, Rojas OJ, Lucia LA, Sain M. 2008. Cellulosic nanocomposites: A review. Bio Res 3(3):929-980. Hinterstoisser B, Åkerholm M, Salména L. 2001. Effect of fiber orientation in dynamic FTIR study on native cellulose. Carbohydr Res 334:27-37. Ikazaki F, Uchida K, Kamiya K, Kawai A, Gotoh A, Akiba E. 1996. Chemically assisted dry comminution of sericite dry comminution method accompanied by ion-exchange. Int J Miner Process. 44-45:93-100. Juan IM, Alvarez VA, Cyras VP, Va´zquez A. 2008. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149-159. Kim DY, Nishiyama Y, Wada M, Kuga S. 2001. Graphitization of highly crystalline cellulose. Carbon 39:1051-1056. Kim UJ, Eomb SH, Wada M. 2010. Thermal decomposition of native cellulose: influence on crystallite size. Polym Degrad Stab (In press). Kuo CH, Lee CK. 2009. Enhancement of enzymatic saccharification of cellulose by cellulose dissolution pretreatments. Carbohyd Polym. 77:41-46. Klemm D, Heublein B, Fink HP, Bohn A. 2005. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl. 44(22):3358-93. Kotov NA, Liz–Marzán LM. 2003. Organization of layer–by–layer assembled nanocomposites: functional effects in photonics and biomaterials. in Liz-Marzán, Luis M, Kamat, Prashant V, editor. Nanoscale materials. Springer US. p. 273-301. Lee SY, Shi SQ, Barnes HM. 2007. Inorganic nanoparticle impregnation into micropore cellular structure viod filler and interfacial compatibilizer. 2007 International conference on nanotechnology for the forest products industry. June13–15, 2007. Knoxville ,Tennessee, USA. Li GK, Li XF, Jiang Y, Zeng MZ, Ding EY. 2003. Size effects of nano-crystalline cellulose. Chinese chemical letters 14 (9):977-978. Lin CH, Conner AH, Hill CC. 1991. The heterogeneous character of the dilute acid hydrolysis of crystalline cellulose. II. hydrolysis in sulfuric acid. J Appl Polym Sci 42:417-26. Ljungberg N, Bonini C, Bortolussi F. 2005. New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: Effect of surface and dispersion characteristics. Biomacromolecules 6(5):2732-2739. Lönnberg H, Fogelström L, Berglund MASASL, Malmström E, Hult A. 2008. Surface grafting of microfibrillated cellulose with poly(e-caprolactone) –Synthesis and characterization. Eur polym J 44:2991-2997. Marguttia S, Vicinia S, Proiettib N, Capitanib D, Coniod G, Pedemontea E, Segre AL. 2002. Physical–chemical characterization of acrylic polymers grafted on cellulose. Polymer 43:6183-6194. Matkó S, Toldy A, Keszei S, Anna P, Bertalan G, Maros G. 2005. Flame retardancy of biodegradable polymers and biocomposites. Polym degrad stabil 88:138-145. Micic M, Radotic K, Jeremic M, Leblanc RM. 2003. Study of self-assembly of the lignin model compound on cellulose model substrate. Macromol Bio sci 3:100-106. Mohamed E, Hassan ML. 2007. Physical and mechanical properties of microcrystalline cellulose prepared from agricultural residues. Carbohyd Polym 67:1-10. Moŕan JI, Alvarez VA, Cyras VP, Vázquez A. 2008. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149-159. Nakagaito AN, Yano H. 2006. Nanocomposites based on cellulose microfibril Cellulose Nanocomposites: Processing, Characterization, and Properties. ACS Symp Ser 938:151-168. Nanotechnology Workshop for the Forest Products Industry. 2004. Nanotechnology for the Forest Products Industry—Vision and Technology Roadmap. TAPPI PRESS Atlanta GA:1-102. Netravali AN, Huang X, Mizuta K. 2007. Advanced ''green'' composites. Advan. Compos Mater 16(4):269-282. Nelson ML, O’Connor RT. 1964. Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in cellulose I and II. J Appl Polym Sci 8:1325-1341. Noorani S, Simonsen J, Atre S. 2007. Nano–enabled microtechnology: polysulfone nanocomposites incorporating cellulose nanocrystals. Cellulose 14:577-584. Odijk T. 1986 Theory of lyotropic liquid crystals. Macromolecules 19:2313-2329. Oksman K, Mathew AP, Bondeson D, Kvien I. 2006. Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66:2776-2784. Page DH, EL–Hosseiny F. 1983. The mechanical properties of single wood pulp fibres: Part VI. Fibril angle and the shape of the of the stress straincurve. Pulp Pap Sci 9(4):99-100. Paralikar S, Simonsen J, Lombardi J. 2008. Poly(vinyl alcohol)/Cellulose Nanocrystal Barrier Films. J Membrane Sci 320:248-258. Pei AH, Zhou Q, Berglund LA. 2010. Functionalized cellulose nanocrystals as biobased nucleation agents in poly(L-lactide) (PLLA) – Crystallization and mechanical property effect. Compos Sci Technol 70:815-821. Petersson L. Oksman K. 2006. Biopolymer based nanocomposites: Comparing layered silicates and microcrystalline cellulose as nanoreinforcement. Compos Sci Technol 66:2187-2196. Petersson L, Kvien I, Oksman K. 2007 Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Compos Sci Technol 67:2535-2544. Pu Y, Zhang J, Elder T, Deng Y, Gatenholm P, Ragauskas AJ. 2007. Investigation into nanocellulosics versus acacia reinforced acrylic films. Composites: Part B 38:360-366. Ray SS, Bousmina M. 2005. Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world. Prog Mater Sci 50:962-1079. Reiner RS. 2008. Cellulose nanocrystals: preparation and processing. International conference on nanotechnology for the forest products industry–nanotechnology from research and development to application. Hyatt Regency, St. Louis, Missouri, USA, June 25-27, 2008. Rodriguez NLG, Thielemans W, Dufresne A. 2006. Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13:261-270. Rojas OJ. 2002. Encyclopedia of surface and colloid science. Marcel Dekker Inc. New York. 2002. pp.517-535. Roman M. inter WT. W. 2004. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671-1677. Roman M. Winter WT. 2006. Cellulose nanocrystals: from discovery to application. TAPPI Technical Papers. 06NANO09 Rosa MF, Medeiros ES, Malmonge JA, Gregorski KS, Wood DF, Mattoso LHC, Glenn G, Orts WJ. 2010. Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohyd Polym 81:83-92. Saito T, Shibata I, Isogai A, Suguri N. Sumikawa N. 2005. Distribution of carboxylate groups introduced into cotton linters by the TEMPO-mediated oxidation. Carbohyd Polym 61:414-419. Sanchez–Garcia MD, Gimenez E, Lagaron JM. 2008. Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohyd Polym 71:235-244. Sakurada I, Nukushima Y, Ito T. 1962. Experimental determination of the elastic modulus of crystalline regions in oriented polymers. Polym Sci 57:651-660. Stenius P, Andresen M. 2008. Preparation, properties and chemical modification of nanosized cellulose fibrils. Highlights in Colloid Science:135-154. Stephanie BC, Roman M, Gray DG. 2005. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6(2):1048-1054. Sun JX, Xu F, Sun XF, Xiao B, Sun RC. 2005. Physico-chemical and thermal characterization of cellulose from barley straw. Polym Degrad Stab 88:521-31 Svagan AJ, Samir MASA, Berglund LA. 2007. Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules 8(8):2556-2563. Thipkhunthod P, Meeyoo V, Rangsunvigit P, Rirksomboon T. 2007. Describing sewage sludge pyrolysis kinetics by a combination of biomass fractions decomposition. J Anal Appl Pyrolysis 79:78-85. Thomas M, Chauvelon G, Lahaye M, Saulnier L. 2003. Location of sulfate groups on sulfoacetate derivatives of cellulose. Carbohyd Res 338:761-770. Tsunashima Y, Hattori K. 2000. Substituent distribution in cellulose acetates: its control and the effect on structure formation in solution. J Colloid Interface Sci 228:279-286. Turbak A, Snyder F, Sandberg K. 1983. Microfibrillated cellulose, a new cellulose product: Properties, uses, and commercial potential. J Appl Polym Sci 37:815-827. Uno H, Tamura K, Yamada H, Umeyama K, Hatta T, Moriyoshi Y. 2009. Preparation and mechanical properties of exfoliated mica-polyamide 6 nanocomposites using sericite mica. Appl Clay Sci 46:81-87. Vandyke RH, Staud CJ, Gray HL. 1931. Treatment of cellulose and oxidized cellulose with acetic-sulfuric acid mixtures. J Am Chem Soc 53:2725-32 Vogel C, Wessel E, Siesler HW. 2008. FT-IR imaging spectroscopy of phase separation in blends of poly(3-hydroxybutyrate) with poly(L-lactic acid) and Poly(ε-caprolactone). Biomacromolecules 9: 523-527. Wang B, Sain M. 2007. Dispersion of soybean stock–based nanofiber in a plastic matrix. Polym Int 56(4):538-546. Wang N, Ding NY, Cheng RS. 2007. Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48:3486-93. Wong SS, Kasapis S, Tan YFM. 2009. Bacterial and plant cellulose modification using ultrasound irradiation. Carbohyd Polym 77:280-287. Woo YJ, Shin BY, Lee TJ, Nar R. 2007. Thermal properties and morphology of biodegradable PLA/starch compatibilized blends. J Ind Eng Chem 13 (3): 457-464. Wu CS. 1995. Handbook of size exclusion chromatography. Chromatogr Sci Ser 69: 331–332 Wu L, Yuan X, Sheng J. 2005 Immobilization of cellulase in nanofibrous PVA membranes by electrospinning. J Memb Sci 250:167-173. Xiang Q, Lee YY, Petterssom PO, Torget RW. 2003. Heterogeneous aspects of acid hydrolysis of α-cellulose. Appl Biochem Biotechnol 3:105-8. Yang ZP, Xu SW, Ma XL, Wang SY. 2008. Characterization and acetylation behavior of bamboo pulp. Wood Sci Technol 42:621-32. Zhang JG, Thomas JE, Pu YQ, Ragauskas AJ. 2007. Facile synthesis of spherical cellulose nanoparticles. Carbohyd Polym 69:607-611. Zhang JG, Jiang N, Dang Z, Elder TJ, Ranauskas AJ. 2008. Oxidation and sulfonation of cellulosics. Cellulose 15:489-96. Zhang JX, Luo J, Tong DM, Zhu LF, Dong LL, Hu CW. 2010. The dependence of pyrolysis behavior on the crystal state of cellulose. Carbohyd Polym 79:164-169. Zhao HB, Kwak JH, Zhang ZC, Brown HM, Arey BW, Holladay JE. 2007. Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohyd Polym 68:235-241. Zini E, Scandola M, Gatenholm P. 2003. Heterogeneous acetylation of flax fibers: Reaction kinetics and surface properties. Biomacromolecules 4:821-827. 網頁資料 www.fpinnovations.ca www.emc.maricopa.edu/faculty/farabee/biobk/cellulose.gif
摘要: 
本研究應用硫酸水解法製備棉漿奈米纖維素,藉由24因子設計探討硫酸濃度、溫度、水解時間、固液比等因子對於得率的影響。不同硫酸濃度下所製得的奈米纖維素產物,利用DLS、TEM、FTIR、13CSNMR、TGA等儀器進行檢測,探討奈米纖維素的粒徑分布、形態、官能基轉移、碳位置及熱分解等性質。研究結果顯示,硫酸濃度與固液比在高水準時,及溫度與時間在低水準時,對奈米纖維素產量有顯著影響。主效應依序為硫酸濃度>溫度>水解時間>固液比。雷射粒徑分析儀與穿透式電子顯微鏡觀測結果顯示,實驗製得的NCC尺寸分佈集中於20~200 nm之間,長寬比由1: 1~1: 30不等。傅立葉轉換式紅外線光譜分析指出,在1010~1080 與 1150~1260 cm-1處吸收峰增強,顯示纖維素長鏈上新增硫酸酯類鍵結。13C固態核磁共振圖譜指出,C4位置由87.39往低磁場區移動,顯示硫酸酯類鍵結於該位置。熱重分析結果顯示,低硫酸組奈米纖維素均在149℃左右產生第一階段重量損失,第二階段熱重損失溫度低硫酸組較中高硫酸組為高,分別是337與205℃;高硫酸組僅於243℃時產生明顯的熱重損失。
最佳得率條件為酸濃度60 %、固液比1: 20、反應溫度45℃、水解5 min所得之收率最佳,產率為54.4 %;以外觀形態區分,則以酸濃度55 %、固液比1: 15、反應溫度50℃、水解5 min所得之產物最適合做為高分子加固材料,該條件之得率為47.5 %,奈米纖維素實際長度約為200 nm、寬度約為5-7 nm。
本研究續用上述條件製得之奈米纖維素及奈米絹雲母做為功能性填料,與聚乳酸共混製備新穎之奈米複合材料,並將材料進行場發式電子顯微鏡觀測、拉伸試驗、熱機械分析、熱重分析以及紫外光-可見光分光光度儀檢測,探討奈米複合材料之表面性質、拉伸強度、Tg點變化與儲存模數、熱重損失以及對不同波長之紫外光所呈現的遮蔽效果。
研究結果指出,添加功能性填料有助於改善聚乳酸表面溶劑揮發時造成的孔洞,但若奈米絹雲母之添加量高於5 %則容易在複合材料中堆疊。添加奈米絹雲母可提升奈米複合材料在常溫下的拉伸強度,但會使材料趨向脆硬失去彈性,單獨添加3 %奈米絹雲母便可將拉伸強度由28.1 Mpa提升至45.4 Mpa,但斷裂伸長率卻會由42.8%下降至22.6 %。在PLA中同時添加奈米纖維素與奈米絹雲母則可改善複合材料彈性降低的情形。PLA之熱裂解起始溫度隨奈米絹雲母添加量增加而上升;若奈米纖維素添加量高於5 %,則複合材料於240℃左右便產生第一階段熱裂解,但主要熱重損失仍發生在300℃以上。本研究製得之奈米複合材料,以PS3C7具有最適拉伸強度、熱機械性能與紫外光遮蔽效果,拉伸強度高達49.0 Mpa,斷裂伸長率為36.8 %,Tg點為65.8 ℃,可降低UVA之穿透率達63.7 %、UVB達64.8 %以及UVC達67.5 %。

The purpose of this study was to use acid hydrolysis of cotton linter to generate nanocrystalline cellulose (NCC). Based on a 24 factorial design, the effects of sulfuric acid concentration, temperature, hydrolysis time, and the solids-to-liquid ratio on the NCC yield were examined. NCC specimens obtained from different sulfuric acid concentrations were subjected to a battery of analyses, including dynamic light scattering (DLS), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), 13C solid-state nuclear magnetic resonance (13CSNMR), and a thermal gravimetric analysis (TGA) to probe the particle size distribution, morphology, functional group shifts, position of the carbon and thermal degradation properties of the ensuing NCC. The results indicated that the sulfuric acid concentration and solids-to-liquor ratio at higher levels, and temperature and reaction time at lower levels were significantly conducive to increases in NCC yields. The main effects in diminishing order were the acid concentration, temperature, hydrolysis time, and solids-to-liquor ratio. Results of DLS and TEM observations suggested that the NCC had a size distribution centered around 20~200 nm, with length-to-width ratios ranging 1: 1~1: 30. The FTIR analysis indicated that absorption peaks at 1010~1080 and 1150~1260 cm-1 were derived from sulfate ester bonds on the cellulosic chains. Solid state 13CNMR spectra indicated that the C4 atoms along the cellulosic chain were shifted from 87.4 ppm to a lower magnetic domain, indicating the sulfonic ester bonding position. The TGA indicated that the lower-sulfuric-acid NCC specimen began step 1 weight loss at ca. 149℃, whereas its onset temperature of step 2 weight loss was generally higher than the mid- and high-acid NCC, at 337 and 205℃, respectively. The high-acid NCC only showed marked weight loss at 243℃. The study found that a sulfuric acid concentration of 60 %, a solids-to-liquor ratio of 1: 20, a hydrolysis temperature of 45℃, and a hydrolysis time of 5 min produced the best yield of 54.4 %.
The best yields which with suitable morphology as reinforcement in polymer was produced under sulfuric acid concentration of 55 %, solids to liquor ratio of 1: 15, hydrolysis temperature of 50℃ and hydrolysis time of 5 min. The yield was 47.5 % with actual length around 200 nm and width around 5-7 nm.
The NCC with appropriate size was then utilized with nanosericite (NS) as reinforcing and functional filling agents in a polylactic acid (PLA) blended for forming novel nanocomposite materials, and subjecting the composites to field-emission scanning electron microscopy (FE-SEM), tensile strength, thermo-mechanical analyses, thermal gravimetric analysis and UV-vis spectroscopic analyses; so as to investigate the modifications achieved by incorporating the nanomaterials on the surface properties, tensile strength, glass transition temperature (Tg), storage modulus, thermal gravimetric loss, and shielding efficacies against UV lights of different wavelengths.
The results indicated that adding the reinforcing and functional filler to a PLA blend was helpful in reducing surface pitting caused by evaporation of PLA solvent. If NS dosage was > 5 %, however, inhomogeneous accumulation of NS plaques tended to occur. Adding NS could enhance the tensile strength of the nanocomposite at room temperature; however the resulting materials also tended to become brittle and lose elasticity. When NS was singly added to 3 %, the tensile strength of the PLA film increased from 28.1 MPa to 45.4 MPa, but with concurrent reduction of elongation at the breaking point from 42.8 % to 22.6 %. Simultaneous addition of NS and NCC to PLA, however, could moderate the elasticity loss. The starting pyrolysis temperature of PLA increased with increasing NS dosage. If the NCC dosage in the composite was > 5 %, at 240℃, the first stage pyrolysis occurred, however the main thermal gravimetric weight loss still require a temperature > 300℃. Among the nanocomposites prepared, the blend PS3C7 showed the most optimal performances in tensile strength, thermo-mechanical properties, and UV shielding efficacies, with tensile strength of 49.0 MPa, breaking elongation rate of 36.8 %, Tg of 65.8℃, and capable of lowering UVA penetration by 63.7 %, UVB by 64.8 %, and UVC by 67.5 %.
URI: http://hdl.handle.net/11455/66109
Appears in Collections:森林學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.