Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/66109
DC FieldValueLanguage
dc.contributor郭蘭生zh_TW
dc.contributorLan-Sheng Kuoen_US
dc.contributor王益真zh_TW
dc.contributor陳信泰zh_TW
dc.contributor盧崑宗zh_TW
dc.contributor林曉洪zh_TW
dc.contributorI-Chen Wangen_US
dc.contributorHsin-Tai Chengen_US
dc.contributorKun-Tsung Luen_US
dc.contributorShau-Hung Linen_US
dc.contributor.advisor洪國榮zh_TW
dc.contributor.advisorKuo-Jung Hungen_US
dc.contributor.author章之平zh_TW
dc.contributor.authorChang, Chih-Pingen_US
dc.contributor.other中興大學zh_TW
dc.date2011zh_TW
dc.date.accessioned2014-06-09T09:29:36Z-
dc.date.available2014-06-09T09:29:36Z-
dc.identifier.citation于達元(2007)濃度對介質研磨纖維素流變性質的影響。台灣大學食品科技研究所碩士論文76頁。 王能、丁恩勇、程鎔時(2006)奈米微晶表面改性研究。高分子學報(8):982–987。 王希國、楊謙(2008)梅林青黴Z18纖維素酶降解纖維素的研究。哈爾濱工業大學學報140(16):919–922。 王淑花、魏麗喬等(2005)抗菌ABS奈米複合材料的研究及應用。 工程塑料應用33(6):8–10。 王耀群 (2007) 以分子動力學結合耗散粒子動力學法觀察不同比例PE與PLLA高分子混合後之奈米結構。國立中山大學機械與機電工程學系碩士論文94頁。 孔令照、李光明、賀文智、徐竟成、王華(2007)微晶纖維素水熱降解的液化產物分佈。遼寧石油化工大學學報27(3):25–28。 江明峰(2003)聚乳酸/蒙脫土奈米複合材料之製備與物性研究。國立中興大學材料工程學研究所碩士論文125頁。 江俊杰 (2001) 尼龍6/二氧化矽奈米複合材料之製備及物性分析。國立中興大學化學工程系碩士論文109頁。 李培耀、宋國君、元峰、王立(2006)奈米纖維素晶鬚及其在奈米複合材料中的應用進展。現代化工(26):96–99。 李宛茜(2004)茭白筍外殼補強複合材料之製作及分析。國立中興大學化學工程學系碩士論文71頁。 宋杰、侯永發 (1995) 微晶纖維素的性質與應用。纖維素科學與技術 3(3): 1–10。 李常勝、李從舉、付中玉、常敏、李小寧(2007)靜電紡PLA微/納米纖維膜的浸潤性能研究。合成纖維工業34(6):5–7。 李國源(2007)生物可分解性聚乳酸之特性、應用及分解。大同大學生物工程研究所碩士論文113頁。 李衛東、郭瑞、原小平、陳飛、丁恩勇(2006)奈米纖維素接枝PET 纖維織物的製備和表徵。纖維素科學與技術14(4):27–30。 何建新、唐予遠、王善元(2008)醋酸纖維素的結晶結構與熱性能。紡織學報29(10):12–16。 余能凱(2005)聚乳酸奈米複合材料之結晶型態與其分子間作用力。萬能科技大學工程科技研究所碩士論文117頁。 吳振森(2001)微晶纖維素的製程因子對其材質與機械性能及應用功能性的影響。台北醫藥大學藥學研究所博士論文119頁。 吳敬謙(2004)懸掛式固定化纖維酵素反應器之廢紙纖維素水解與醣類產物分析。私立中原大學化學系碩士論文94頁。 林志光(2002)聚苯乙烯/蒙脫土奈米複合材料之合成與性質研究。中原大學化學研究所碩士論文78頁。 袁毅、張黎明、高文遠(2007)穿龍薯蕷微晶纖維素的製備及其理化性質研究。生物質化學工程41(4):22–26。 許銘欽(2007)滑石粉表面修飾對聚乳酸結晶行為之影響。東海大學化工系碩士論文107頁。 陳育如、夏黎明、吳綿斌、岑沛霖(1999)植物纖維素原料預處理技術的研究進展。化工進展18(4):24–27。 陳時欣(2005)蔗糖酯對奈米/次微米纖維素懸浮液穩定性之研究。國立臺灣大學。食品科學研究所碩士論文89頁。 陳勃怡、雷大同、蔡印來(2005)向陽絹雲母礦之礦物分佈研究。資源與環境學術研討會。花蓮。 張馨云(2008)酸水解法製備多醣奈米結晶粒子之研究。台灣大學農業化學研究所碩士論文69頁。 梁博(2007)聚乳酸合成方法研究進展。石油化工應用26(5):1–3。 童昕、唐濤、朱甯、馮之榴、黃葆同(2002)利用聚合物乳液合成聚甲基丙烯酸甲酯/二氧化矽奈米雜化材料。高等學校化學學報 23(2):306–309。 葉書吉(2007)有機蒙脫土對聚乳酸結晶行為影響之研究。東海大學化工系碩士論文270頁。 葉代勇(2007)奈米纖維素的製備。化工進展19(10):1568–1575。 劉富弘(2007)纖維直徑與微結構對聚丙烯穿晶形成能力的影響。成功大學化學工程系碩士論文104頁。 劉軍輝、張軍、李楓(2005)苯乙烯-丙烯酸丁酯/蒙脫土奈米複合材料的阻燃性。高分子材料與工程21(4):156–159。 趙明煜(2004)奈米纖維製備方法之研究。台灣大學食品科技研究所碩士論文110頁。 甄文娟、單志華(2008)奈米纖維素在綠色複合材料中的應用研究。現代化工28(6):85–88。 黎國康、丁恩勇、李小芳、姜勇(2002)奈米晶體纖維素Ⅱ的製備與表徵研究。纖維素科學與技術10(2):12–19。 羅素娟(1997)甘蔗渣微晶纖維素的研製。廣西化工26(3):4–7。 羅素娟(1998)淺談微晶纖維素的生產和製備過程。廣西化纖通訊l(2):26–28。 謝文展(2007) 絹雲母奈米級製程開發。 大葉大學環境工程學系碩士論文112頁。 Adebajo MO, Frost RL, Kloprogge JT, Kokot S. 2005. Raman spectroscopic investigation of acetylation of raw cotton. Spectrochimica Acta Part A 64 : 448-453. Ago M, Endo T, Hirotsu T. 2004. Crystalline transformation of native cellulose from cellulose I to cellulose II polymorph by a ball-milling method with a specific amount of water. Cellulose 11:163-167. Andresen M, Johansson LS, Tanem BS, Stenius P. 2006. Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13(6):665-677. Atalla RH, Vanderhart DL. 1984. Native Cellulose: A Composite of Two Distinct Crystalline Forms. Science 20 (223):283-285. Atalla RH. 1993. The structures of native celluloses. in Suominen P. Reinikainen T. editors. Trichoderma reesei cellulases and other hydrolases, Espoo: Foundation for Biotechnical and Industrial Fermentation Research 8:25-39. Atalla RH. 2007. Nanoscale nucleation of celluloses in the cellulose I form during isolation, regeneration and in cellulose IV. TAPPI 2007 international conference on nanotechnology for the forest products industry. Knoxville, TN June 13 -15, 2007. Baird MS, O’ Sullivan AC. 1998. A native cellulose model. Cellulose 5:80-111. Beck–Candanedo S, Roman M, Gray DG. 2005. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6(2):1048-1054. Bondeson D, Mathew A, Oksman K. 2006. Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171-180. Chen XM, Burger C, Fang DF, Ruan D, Zhang L Hsiao BS, Chu B. 2006. X-ray studies of regenerated cellulose fibers wet spun from cotton linter pulp in NaOH/thiourea aqueous solutions. Polymer 47:2839-2848. Cheng Q, Wang SQ, Rials TG, Lee SH. 2007. Physical and mechanical properties of polyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulose fibers. Cellulose 14(6):593-602. Choi Y, Simonsen J. 2006. Cellulose nanocrystal–filled carboxy methyl cellulose nanocomposites. J. Nanosci and Nanotech 6(3):633-639. Coltthup NB, Daly LH, Wiberley SE. 1964. Introduction to infrared and raman spectroscopy. Academic Press, New York, 1964, pp. 409. Das K, Ray D, Bandyopadhyay NR, Ghosh T, Mohanty AK, Misra M. 2009. A study of the mechanical, thermal and morphological properties of microcrystalline cellulose particles prepared from cotton slivers using different acid concentrations. Cellulose 16:783-793. Dong XM, Revol JF, Gray DG. 1998. Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19-32. Elazzouzi–Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F. Rochas C. 2008. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9(1):57-65. Ek R, Alderborn G, Nyström C. 1994. Particle analysis of microcrystalline cellulose: differentiation between individual particles and their agglomerates. Int J Pharm 111:43-50. Essawy HA, Nourelhoda A, Abd EW, Mahmoud A, Abd EG. 2008. PVC–laponite nanocomposites: Enhanced resistance to UV radiation. Polym Degrad Stab 93:1472–1478. Fabrizio P, Be´due´ O, Chanzy H, Heux L. 2007. Solid-state 13C NMR study of Na-cellulose complexes. Biomacromolecules 8:2586-2593. Favier V, Canova GR, Cavaille JY, Chanzy H, Dufresne A, Gauthier C. 1995. Nanocomposite materials from latex and cellulose whiskers. Polym Advan Technol 6(5):351-355. Filpponen I, Wang XW, Lucia LA, Argyropoulos DS. 2007. Effect of reaction conditions on the formation and thermal behavior of cellulose nanocrystals. 2007 International Conference on Nanotechnology For the Forest Products Industry13-15 June Knoxville, Tennessee, USA. Gindl W, Keckes J. 2005. All-cellulose nanocomposite. Polymer 46:10221-10225. Gousse´ C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E. 2002. Stable suspensions of partially silylated cellulose whiskers in organic solvents. Polymer 43:2645-2651. Gray DG. 2008. Transcrystallization of polypropylene at cellulose nanocrystal surfaces. Cellulose 15:297-301. Grunert M. 2002. Cellulose Nanocrystals: Preparation, surface modification, and application in nanocomposites. Ph D. Dissertation of State University of New York. Gümüşkaya E, Usta M, Balaban M. 2007. Carbohydrate components and crystalline structure of organosolv hemp (Cannabis sativa L.) bast fibers pulp. Bioresource Technol. 98:491-497. Habibi Y, Chanzy H, Vignon MR. 2006. TEMPO–mediated surface oxidation of cellulose whiskers. Cellulose 13:679-687. Hai L, Kang WG, Huang M, Ding D, Xu X. 2004. Mechanochemical modification and application of two-dimension sericite flaky nano-materials. J Univ Sci Technol B. 25(6):627-630. [in Chinese with English summary] Henton DE, Gruber P, Lunt J, Randall J. 2005. In: Mohanty A.K., Misra M. Drzal LT. editors. Natural Fibers, Biopolymers, and Biocomposites. Florida: Taylor & Francis Group. P 538-547. Herrick FW, Casebier RL, Hamilton JK, Sandberg KR. 1983. Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci 37:797-813. Heux L, Chauve G, Bonini C. 2000. Nonflocculating and chiral–nematic self–ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16 (21):8210-8212. Hubbe MA, Rojas OJ, Lucia LA, Sain M. 2008. Cellulosic nanocomposites: A review. Bio Res 3(3):929-980. Hinterstoisser B, Åkerholm M, Salména L. 2001. Effect of fiber orientation in dynamic FTIR study on native cellulose. Carbohydr Res 334:27-37. Ikazaki F, Uchida K, Kamiya K, Kawai A, Gotoh A, Akiba E. 1996. Chemically assisted dry comminution of sericite dry comminution method accompanied by ion-exchange. Int J Miner Process. 44-45:93-100. Juan IM, Alvarez VA, Cyras VP, Va´zquez A. 2008. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149-159. Kim DY, Nishiyama Y, Wada M, Kuga S. 2001. Graphitization of highly crystalline cellulose. Carbon 39:1051-1056. Kim UJ, Eomb SH, Wada M. 2010. Thermal decomposition of native cellulose: influence on crystallite size. Polym Degrad Stab (In press). Kuo CH, Lee CK. 2009. Enhancement of enzymatic saccharification of cellulose by cellulose dissolution pretreatments. Carbohyd Polym. 77:41-46. Klemm D, Heublein B, Fink HP, Bohn A. 2005. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl. 44(22):3358-93. Kotov NA, Liz–Marzán LM. 2003. Organization of layer–by–layer assembled nanocomposites: functional effects in photonics and biomaterials. in Liz-Marzán, Luis M, Kamat, Prashant V, editor. Nanoscale materials. Springer US. p. 273-301. Lee SY, Shi SQ, Barnes HM. 2007. Inorganic nanoparticle impregnation into micropore cellular structure viod filler and interfacial compatibilizer. 2007 International conference on nanotechnology for the forest products industry. June13–15, 2007. Knoxville ,Tennessee, USA. Li GK, Li XF, Jiang Y, Zeng MZ, Ding EY. 2003. Size effects of nano-crystalline cellulose. Chinese chemical letters 14 (9):977-978. Lin CH, Conner AH, Hill CC. 1991. The heterogeneous character of the dilute acid hydrolysis of crystalline cellulose. II. hydrolysis in sulfuric acid. J Appl Polym Sci 42:417-26. Ljungberg N, Bonini C, Bortolussi F. 2005. New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: Effect of surface and dispersion characteristics. Biomacromolecules 6(5):2732-2739. Lönnberg H, Fogelström L, Berglund MASASL, Malmström E, Hult A. 2008. Surface grafting of microfibrillated cellulose with poly(e-caprolactone) –Synthesis and characterization. Eur polym J 44:2991-2997. Marguttia S, Vicinia S, Proiettib N, Capitanib D, Coniod G, Pedemontea E, Segre AL. 2002. Physical–chemical characterization of acrylic polymers grafted on cellulose. Polymer 43:6183-6194. Matkó S, Toldy A, Keszei S, Anna P, Bertalan G, Maros G. 2005. Flame retardancy of biodegradable polymers and biocomposites. Polym degrad stabil 88:138-145. Micic M, Radotic K, Jeremic M, Leblanc RM. 2003. Study of self-assembly of the lignin model compound on cellulose model substrate. Macromol Bio sci 3:100-106. Mohamed E, Hassan ML. 2007. Physical and mechanical properties of microcrystalline cellulose prepared from agricultural residues. Carbohyd Polym 67:1-10. Moŕan JI, Alvarez VA, Cyras VP, Vázquez A. 2008. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149-159. Nakagaito AN, Yano H. 2006. Nanocomposites based on cellulose microfibril Cellulose Nanocomposites: Processing, Characterization, and Properties. ACS Symp Ser 938:151-168. Nanotechnology Workshop for the Forest Products Industry. 2004. Nanotechnology for the Forest Products Industry—Vision and Technology Roadmap. TAPPI PRESS Atlanta GA:1-102. Netravali AN, Huang X, Mizuta K. 2007. Advanced ''green'' composites. Advan. Compos Mater 16(4):269-282. Nelson ML, O’Connor RT. 1964. Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in cellulose I and II. J Appl Polym Sci 8:1325-1341. Noorani S, Simonsen J, Atre S. 2007. Nano–enabled microtechnology: polysulfone nanocomposites incorporating cellulose nanocrystals. Cellulose 14:577-584. Odijk T. 1986 Theory of lyotropic liquid crystals. Macromolecules 19:2313-2329. Oksman K, Mathew AP, Bondeson D, Kvien I. 2006. Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66:2776-2784. Page DH, EL–Hosseiny F. 1983. The mechanical properties of single wood pulp fibres: Part VI. Fibril angle and the shape of the of the stress straincurve. Pulp Pap Sci 9(4):99-100. Paralikar S, Simonsen J, Lombardi J. 2008. Poly(vinyl alcohol)/Cellulose Nanocrystal Barrier Films. J Membrane Sci 320:248-258. Pei AH, Zhou Q, Berglund LA. 2010. Functionalized cellulose nanocrystals as biobased nucleation agents in poly(L-lactide) (PLLA) – Crystallization and mechanical property effect. Compos Sci Technol 70:815-821. Petersson L. Oksman K. 2006. Biopolymer based nanocomposites: Comparing layered silicates and microcrystalline cellulose as nanoreinforcement. Compos Sci Technol 66:2187-2196. Petersson L, Kvien I, Oksman K. 2007 Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Compos Sci Technol 67:2535-2544. Pu Y, Zhang J, Elder T, Deng Y, Gatenholm P, Ragauskas AJ. 2007. Investigation into nanocellulosics versus acacia reinforced acrylic films. Composites: Part B 38:360-366. Ray SS, Bousmina M. 2005. Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world. Prog Mater Sci 50:962-1079. Reiner RS. 2008. Cellulose nanocrystals: preparation and processing. International conference on nanotechnology for the forest products industry–nanotechnology from research and development to application. Hyatt Regency, St. Louis, Missouri, USA, June 25-27, 2008. Rodriguez NLG, Thielemans W, Dufresne A. 2006. Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13:261-270. Rojas OJ. 2002. Encyclopedia of surface and colloid science. Marcel Dekker Inc. New York. 2002. pp.517-535. Roman M. inter WT. W. 2004. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671-1677. Roman M. Winter WT. 2006. Cellulose nanocrystals: from discovery to application. TAPPI Technical Papers. 06NANO09 Rosa MF, Medeiros ES, Malmonge JA, Gregorski KS, Wood DF, Mattoso LHC, Glenn G, Orts WJ. 2010. Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohyd Polym 81:83-92. Saito T, Shibata I, Isogai A, Suguri N. Sumikawa N. 2005. Distribution of carboxylate groups introduced into cotton linters by the TEMPO-mediated oxidation. Carbohyd Polym 61:414-419. Sanchez–Garcia MD, Gimenez E, Lagaron JM. 2008. Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohyd Polym 71:235-244. Sakurada I, Nukushima Y, Ito T. 1962. Experimental determination of the elastic modulus of crystalline regions in oriented polymers. Polym Sci 57:651-660. Stenius P, Andresen M. 2008. Preparation, properties and chemical modification of nanosized cellulose fibrils. Highlights in Colloid Science:135-154. Stephanie BC, Roman M, Gray DG. 2005. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6(2):1048-1054. Sun JX, Xu F, Sun XF, Xiao B, Sun RC. 2005. Physico-chemical and thermal characterization of cellulose from barley straw. Polym Degrad Stab 88:521-31 Svagan AJ, Samir MASA, Berglund LA. 2007. Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules 8(8):2556-2563. Thipkhunthod P, Meeyoo V, Rangsunvigit P, Rirksomboon T. 2007. Describing sewage sludge pyrolysis kinetics by a combination of biomass fractions decomposition. J Anal Appl Pyrolysis 79:78-85. Thomas M, Chauvelon G, Lahaye M, Saulnier L. 2003. Location of sulfate groups on sulfoacetate derivatives of cellulose. Carbohyd Res 338:761-770. Tsunashima Y, Hattori K. 2000. Substituent distribution in cellulose acetates: its control and the effect on structure formation in solution. J Colloid Interface Sci 228:279-286. Turbak A, Snyder F, Sandberg K. 1983. Microfibrillated cellulose, a new cellulose product: Properties, uses, and commercial potential. J Appl Polym Sci 37:815-827. Uno H, Tamura K, Yamada H, Umeyama K, Hatta T, Moriyoshi Y. 2009. Preparation and mechanical properties of exfoliated mica-polyamide 6 nanocomposites using sericite mica. Appl Clay Sci 46:81-87. Vandyke RH, Staud CJ, Gray HL. 1931. Treatment of cellulose and oxidized cellulose with acetic-sulfuric acid mixtures. J Am Chem Soc 53:2725-32 Vogel C, Wessel E, Siesler HW. 2008. FT-IR imaging spectroscopy of phase separation in blends of poly(3-hydroxybutyrate) with poly(L-lactic acid) and Poly(ε-caprolactone). Biomacromolecules 9: 523-527. Wang B, Sain M. 2007. Dispersion of soybean stock–based nanofiber in a plastic matrix. Polym Int 56(4):538-546. Wang N, Ding NY, Cheng RS. 2007. Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48:3486-93. Wong SS, Kasapis S, Tan YFM. 2009. Bacterial and plant cellulose modification using ultrasound irradiation. Carbohyd Polym 77:280-287. Woo YJ, Shin BY, Lee TJ, Nar R. 2007. Thermal properties and morphology of biodegradable PLA/starch compatibilized blends. J Ind Eng Chem 13 (3): 457-464. Wu CS. 1995. Handbook of size exclusion chromatography. Chromatogr Sci Ser 69: 331–332 Wu L, Yuan X, Sheng J. 2005 Immobilization of cellulase in nanofibrous PVA membranes by electrospinning. J Memb Sci 250:167-173. Xiang Q, Lee YY, Petterssom PO, Torget RW. 2003. Heterogeneous aspects of acid hydrolysis of α-cellulose. Appl Biochem Biotechnol 3:105-8. Yang ZP, Xu SW, Ma XL, Wang SY. 2008. Characterization and acetylation behavior of bamboo pulp. Wood Sci Technol 42:621-32. Zhang JG, Thomas JE, Pu YQ, Ragauskas AJ. 2007. Facile synthesis of spherical cellulose nanoparticles. Carbohyd Polym 69:607-611. Zhang JG, Jiang N, Dang Z, Elder TJ, Ranauskas AJ. 2008. Oxidation and sulfonation of cellulosics. Cellulose 15:489-96. Zhang JX, Luo J, Tong DM, Zhu LF, Dong LL, Hu CW. 2010. The dependence of pyrolysis behavior on the crystal state of cellulose. Carbohyd Polym 79:164-169. Zhao HB, Kwak JH, Zhang ZC, Brown HM, Arey BW, Holladay JE. 2007. Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohyd Polym 68:235-241. Zini E, Scandola M, Gatenholm P. 2003. Heterogeneous acetylation of flax fibers: Reaction kinetics and surface properties. Biomacromolecules 4:821-827. 網頁資料 www.fpinnovations.ca www.emc.maricopa.edu/faculty/farabee/biobk/cellulose.gifzh_TW
dc.identifier.urihttp://hdl.handle.net/11455/66109-
dc.description.abstract本研究應用硫酸水解法製備棉漿奈米纖維素,藉由24因子設計探討硫酸濃度、溫度、水解時間、固液比等因子對於得率的影響。不同硫酸濃度下所製得的奈米纖維素產物,利用DLS、TEM、FTIR、13CSNMR、TGA等儀器進行檢測,探討奈米纖維素的粒徑分布、形態、官能基轉移、碳位置及熱分解等性質。研究結果顯示,硫酸濃度與固液比在高水準時,及溫度與時間在低水準時,對奈米纖維素產量有顯著影響。主效應依序為硫酸濃度>溫度>水解時間>固液比。雷射粒徑分析儀與穿透式電子顯微鏡觀測結果顯示,實驗製得的NCC尺寸分佈集中於20~200 nm之間,長寬比由1: 1~1: 30不等。傅立葉轉換式紅外線光譜分析指出,在1010~1080 與 1150~1260 cm-1處吸收峰增強,顯示纖維素長鏈上新增硫酸酯類鍵結。13C固態核磁共振圖譜指出,C4位置由87.39往低磁場區移動,顯示硫酸酯類鍵結於該位置。熱重分析結果顯示,低硫酸組奈米纖維素均在149℃左右產生第一階段重量損失,第二階段熱重損失溫度低硫酸組較中高硫酸組為高,分別是337與205℃;高硫酸組僅於243℃時產生明顯的熱重損失。 最佳得率條件為酸濃度60 %、固液比1: 20、反應溫度45℃、水解5 min所得之收率最佳,產率為54.4 %;以外觀形態區分,則以酸濃度55 %、固液比1: 15、反應溫度50℃、水解5 min所得之產物最適合做為高分子加固材料,該條件之得率為47.5 %,奈米纖維素實際長度約為200 nm、寬度約為5-7 nm。 本研究續用上述條件製得之奈米纖維素及奈米絹雲母做為功能性填料,與聚乳酸共混製備新穎之奈米複合材料,並將材料進行場發式電子顯微鏡觀測、拉伸試驗、熱機械分析、熱重分析以及紫外光-可見光分光光度儀檢測,探討奈米複合材料之表面性質、拉伸強度、Tg點變化與儲存模數、熱重損失以及對不同波長之紫外光所呈現的遮蔽效果。 研究結果指出,添加功能性填料有助於改善聚乳酸表面溶劑揮發時造成的孔洞,但若奈米絹雲母之添加量高於5 %則容易在複合材料中堆疊。添加奈米絹雲母可提升奈米複合材料在常溫下的拉伸強度,但會使材料趨向脆硬失去彈性,單獨添加3 %奈米絹雲母便可將拉伸強度由28.1 Mpa提升至45.4 Mpa,但斷裂伸長率卻會由42.8%下降至22.6 %。在PLA中同時添加奈米纖維素與奈米絹雲母則可改善複合材料彈性降低的情形。PLA之熱裂解起始溫度隨奈米絹雲母添加量增加而上升;若奈米纖維素添加量高於5 %,則複合材料於240℃左右便產生第一階段熱裂解,但主要熱重損失仍發生在300℃以上。本研究製得之奈米複合材料,以PS3C7具有最適拉伸強度、熱機械性能與紫外光遮蔽效果,拉伸強度高達49.0 Mpa,斷裂伸長率為36.8 %,Tg點為65.8 ℃,可降低UVA之穿透率達63.7 %、UVB達64.8 %以及UVC達67.5 %。zh_TW
dc.description.abstractThe purpose of this study was to use acid hydrolysis of cotton linter to generate nanocrystalline cellulose (NCC). Based on a 24 factorial design, the effects of sulfuric acid concentration, temperature, hydrolysis time, and the solids-to-liquid ratio on the NCC yield were examined. NCC specimens obtained from different sulfuric acid concentrations were subjected to a battery of analyses, including dynamic light scattering (DLS), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), 13C solid-state nuclear magnetic resonance (13CSNMR), and a thermal gravimetric analysis (TGA) to probe the particle size distribution, morphology, functional group shifts, position of the carbon and thermal degradation properties of the ensuing NCC. The results indicated that the sulfuric acid concentration and solids-to-liquor ratio at higher levels, and temperature and reaction time at lower levels were significantly conducive to increases in NCC yields. The main effects in diminishing order were the acid concentration, temperature, hydrolysis time, and solids-to-liquor ratio. Results of DLS and TEM observations suggested that the NCC had a size distribution centered around 20~200 nm, with length-to-width ratios ranging 1: 1~1: 30. The FTIR analysis indicated that absorption peaks at 1010~1080 and 1150~1260 cm-1 were derived from sulfate ester bonds on the cellulosic chains. Solid state 13CNMR spectra indicated that the C4 atoms along the cellulosic chain were shifted from 87.4 ppm to a lower magnetic domain, indicating the sulfonic ester bonding position. The TGA indicated that the lower-sulfuric-acid NCC specimen began step 1 weight loss at ca. 149℃, whereas its onset temperature of step 2 weight loss was generally higher than the mid- and high-acid NCC, at 337 and 205℃, respectively. The high-acid NCC only showed marked weight loss at 243℃. The study found that a sulfuric acid concentration of 60 %, a solids-to-liquor ratio of 1: 20, a hydrolysis temperature of 45℃, and a hydrolysis time of 5 min produced the best yield of 54.4 %. The best yields which with suitable morphology as reinforcement in polymer was produced under sulfuric acid concentration of 55 %, solids to liquor ratio of 1: 15, hydrolysis temperature of 50℃ and hydrolysis time of 5 min. The yield was 47.5 % with actual length around 200 nm and width around 5-7 nm. The NCC with appropriate size was then utilized with nanosericite (NS) as reinforcing and functional filling agents in a polylactic acid (PLA) blended for forming novel nanocomposite materials, and subjecting the composites to field-emission scanning electron microscopy (FE-SEM), tensile strength, thermo-mechanical analyses, thermal gravimetric analysis and UV-vis spectroscopic analyses; so as to investigate the modifications achieved by incorporating the nanomaterials on the surface properties, tensile strength, glass transition temperature (Tg), storage modulus, thermal gravimetric loss, and shielding efficacies against UV lights of different wavelengths. The results indicated that adding the reinforcing and functional filler to a PLA blend was helpful in reducing surface pitting caused by evaporation of PLA solvent. If NS dosage was > 5 %, however, inhomogeneous accumulation of NS plaques tended to occur. Adding NS could enhance the tensile strength of the nanocomposite at room temperature; however the resulting materials also tended to become brittle and lose elasticity. When NS was singly added to 3 %, the tensile strength of the PLA film increased from 28.1 MPa to 45.4 MPa, but with concurrent reduction of elongation at the breaking point from 42.8 % to 22.6 %. Simultaneous addition of NS and NCC to PLA, however, could moderate the elasticity loss. The starting pyrolysis temperature of PLA increased with increasing NS dosage. If the NCC dosage in the composite was > 5 %, at 240℃, the first stage pyrolysis occurred, however the main thermal gravimetric weight loss still require a temperature > 300℃. Among the nanocomposites prepared, the blend PS3C7 showed the most optimal performances in tensile strength, thermo-mechanical properties, and UV shielding efficacies, with tensile strength of 49.0 MPa, breaking elongation rate of 36.8 %, Tg of 65.8℃, and capable of lowering UVA penetration by 63.7 %, UVB by 64.8 %, and UVC by 67.5 %.en_US
dc.description.tableofcontents目錄--------------------------------------------------------------I 表目次 ------------------------------------------------------VII 圖目次--------------------------------------------------------XII 摘要------------------------------------------------------------- 1 Summary ------------------------------------------------------ 4 第一章 前言-------------------------------------------------- 8 第二章 文獻回顧-------------------------------------------12 一、纖維素的定義與應用領域---------------------------------------12 二、奈米纖維素的定義與應用-------------------------------------- 17 三、具備生物可分解性之奈米複合材料--------------------------- 24 四、無機礦材與奈米纖維素在高分子聚合物中的功能與應用實例--------------------------------------------------------------------- 27 五、檢測儀器之簡介與應用實例----------------------------------- 34 (一)、穿透式電子顯微鏡-------------------------------------- 34 (二)、傅立葉轉換紅外線光譜儀------------------------------ 36 (三)、13C核磁共振分析---------------------------------------- 38 (四)、小角度X射線繞射儀------------------------------------ 42 (五)熱重分析儀------------------------------------------------ 43 (六)、動態機械分析------------------------------------------- 44 (七)、紫外光-可見光分光光度計------------------------------ 46 第三章硫酸水解法製備棉漿奈米纖維素及性質分析49 一、硫酸水解法製備奈米纖維素----------------------------------- 49 (一) 使用儀器----------------------------------------------------50 (二) 實驗材料----------------------------------------------------51 (三) 實驗方法----------------------------------------------------51 二、奈米纖維素基本性質檢測---------------------------------------52 (一)DLS檢測尺寸分布-------------------------------------------54 1. 使用儀器-------------------------------------------------54 2. 實驗步驟-------------------------------------------------54 (二)TEM觀測實際型態------------------------------------------55 1. 使用儀器-------------------------------------------------55 2. 實驗步驟-------------------------------------------------55 (三) FTIR檢測官能基變化---------------------------------------55 1. 使用儀器-------------------------------------------------55 2. 實驗步驟-------------------------------------------------55 (四)交叉極化固態13C NMR--------------------------------------55 1. 使用儀器-------------------------------------------------56 (五) SAXRD檢測NCC晶型變化與結晶度----------------------56 1. 使用儀器-------------------------------------------------56 2. 實驗步驟-------------------------------------------------56 (六) TGA檢測NCC之熱重變化----------------------------------57 1. 使用儀器-------------------------------------------------57 2. 實驗步驟-------------------------------------------------57 三、結果與討論------------------------------------------------------58 (一) 硫酸水解各因子效應分析--------------------------------58 (二) NCC產率隨水解時間變化趨勢-----------------------------61 (三) 奈米纖維素基本性質檢測---------------------------------64 1 DLS分析奈米纖維素尺寸--------------------------------64 2 TEM觀測奈米纖維素外觀--------------------------------67 3 FTIR檢測官能基------------------------------------------71 4 CP/MAS 13CSNMR檢測結果-----------------------------74 5 小角度X-ray繞射檢測結果-------------------------------78 6 硫酸水解產物之熱穩定性分析--------------------------82 (四) 小結---------------------------------------------------------86 第四章纖維素/絹雲母/聚乳酸奈米複合材料物理性能檢測----------------------------------------------------------89 一、原料及奈米複合材料製備--------------------------------------91 (一) 製備奈米纖維素--------------------------------------------91 (二) 製備奈米絹雲母--------------------------------------------91 1. 使用儀器-------------------------------------------------91 2. 實驗步驟-------------------------------------------------91 (三) 製備奈米複合材料-----------------------------------------92 1. 實驗材料-------------------------------------------------92 2. 實驗步驟-------------------------------------------------92 (1) 奈米絹雲母/PLA複合材料--------------------------92 (2) 奈米纖維素/PLA複合材料--------------------------93 (3) 奈米纖維素/奈米絹雲母/PLA複合材料------------93 二、奈米複合材料性能檢測-----------------------------------------94 (一) 拉伸強度試驗-----------------------------------------------94 1. 使用儀器-------------------------------------------------94 2. 實驗步驟-------------------------------------------------94 (二) FESEM檢測奈米複合材料表面性--------------------------94 1. 使用儀器-------------------------------------------------94 2. 實驗步驟-------------------------------------------------95 (三) FTIR檢測複合材料官能基變化----------------------------95 1. 使用儀器-------------------------------------------------95 2. 實驗步驟-------------------------------------------------95 (四) 奈米複合材料與原料之TGA熱分析-----------------------95 1. 使用儀器-------------------------------------------------95 2. 實驗步驟-------------------------------------------------95 (五) 動態熱機械分析--------------------------------------------96 1. 使用儀器-------------------------------------------------96 2. 實驗步驟-------------------------------------------------96 (六) 紫外光屏障效果--------------------------------------------96 1. 使用儀器-------------------------------------------------96 2. 實驗步驟-------------------------------------------------96 三、結果與討論----------------------------------------------------98 (一) 拉伸強度試驗----------------------------------------------98 (二) FESEM檢測奈米複合材料表面性質----------------------106 (三) FTIR檢測複合材料官能基變化---------------------------114 (四) 奈米複合材料之TGA熱分析-----------------------------117 (五) 動態熱機械分析-------------------------------------------130 (六) 紫外光屏障效果-------------------------------------------139 四、小結------------------------------------------------------------143 第五章 結 論-----------------------------------------------------145 參考文獻-----------------------------------------------------148 附 錄----------------------------------------------------------164 表 目 次 表2.1 奈米纖維素與針葉樹牛皮漿物理性質之比較------------------18 Table 2.1 Comparison of physical properties between nanocellulose and softwood Kraft pulp 表2.2常見纖維材料與纖維素奈米纖維機械性質之比較------------19 Table 2.2 Comparison of mechanical properties between cellulose nanofibrils and common fibrillar materials 表2.3各種天然奈米纖維素材料的尺度----------------------------22 Table 2.3 Sizes of several native nano-cellulosic materials 表2.4 室溫下PLLA與以纖維素奈米結晶成核之PLLA複合薄膜之機械性質------------------------------------------------------------------31 表2.5 中英文縮寫對照表----------------------------------------------48 Table 2.5 Abbreviation table 表3.1 24因子設計之試驗矩陣-----------------------------------------49 Table 3.1 The matrix of 24 factorial design 表3.2 24因子設計下之NCC產率------------------------------------59 Table 3.2 NCC yields produced under 24 factorial design 表3.3各因子對水解過程的主效應與F值----------------------------60 Table 3.3 Main effects and F-values of the variance analysis (ANOVA) 表3.4 各因子間的交互作用與F值------------------------------------60 Table 3.4 Interactions and F-values of the variance analysis (ANOVA) 表3.5 TEM與光學顯微鏡觀測水解產物之尺寸-----------------------69 Table 3.5 The dimensions of hydrolysis products identified from TEM and optical microscopy 表3.6 不同水解條件下各水解產物之熱裂解參數--------------------82 Table 3.6 Thermo-degradation parameters for hydrolysis products produced under different conditions 表4.1 PLA與PS1~PS10奈米複合薄膜之最大拉伸強度與破壞伸---98 Table 4.1 Max tensile strength and elongation at break of PS1~PS10 nanocomposite films 表4.2奈米複合薄膜PC1~PC10之最大拉伸強度與破壞伸長率------99 Table 4.2 Max tensile strength and elongation at break of PC1~PC10 nanocomposite films 表4.3 PS3C1~10奈米複合薄膜之最大拉伸強度與破壞伸長率------99 Table 4.2 Max tensile strength and elongation at break of PS3C1~10 nanocomposite films 表4.4 室溫下PLLA與以纖維素奈米結晶成核之PLLA複合薄膜之機械性質------------------------------------------------------------------106 Table 4.4 Mechanical properties of PLLA and cellulose nanocrystals nucleated PLLA composite films at room temperature. 表4.5 PLA、NCC55、PS以及PS1~PS10之熱裂解相關參數----------117 Table 4.5 Thermal degradation parameters for PLA, NCC55, PS and PS1~PS10 表4.6 PC1~PC10之熱裂解相關參數----------------------------------118 Table 4.6 Thermal degradation parameters for PC1~PC10 表4.7 PS3C1~PS3C10之熱裂解相關參數----------------------------118 Table 4.7 Thermal degradation parameters for PS3C1~PS3C10 表4.8奈米複合材料PS1~PS10以及各原料之紫外光穿透率-------139 Table 4.8 The UV transmittance rate of PS1~PS10 and the materials used to form the nanocomposites 表4.9 奈米複合材料PC1~PC10之紫外光穿透率-------------------140 Table 4.9 The UV transmittance rate of PC1~PC10 and the materials used to from the nanocomposites 表4.10 奈米複合材料PS3C1~PS3C10之紫外光穿透率------------140 Table 4.10 The UV transmittance rate of nanocomposites PC1~PC10 附表1 單因子ANOVA分析結果------------------------------------164 Subtable 1 Results of single ANOVA 附表2固定酸濃度及固液比之2因子ANOVA分析結果 -----------164 Subtable 2 The interaction between acid concentration and solid/liquid ratio produced by ANOVA 附表3 固定固液比及反應溫度之2因子ANOVA分析結果---------165 Subtable 3 The interaction between solid/liquid ratio and reaction temperature produced by ANOVA 附表4 固定固液比及反應時間之2因子ANOVA分析結果---------165 Subtable 4 The interaction between solid/liquid ratio and reaction time produced by ANOVA 附表5 固定酸濃度及反應溫度之2因子ANOVA分析結果---------166 Subtable 5 The interaction between acid concentration and reaction temperature produced by ANOVA 附表6 固定酸濃度及反應時間之2因子ANOVA分析結果--------166 Subtable 6 The interaction between acid concentration and reaction time produced by ANOVA 附表7 固定反應溫度及反應時間之2因子ANOVA分析結果------167 Subtable 7 The interaction between reaction temperature and reaction time produced by ANOVA 附表8固定酸濃度、固液比及反應溫度之3因子ANOVA分析結果--------------------------------------------------------------------------167 Subtable 8 The interaction between acid concentration, solid liquid ratio and reaction temperature produced by ANOVA 附表9固定酸濃度、固液比及反應時間之3因子ANOVA分析結果--------------------------------------------------------------------------168 Subtable 9 The interaction between acid concentration, solid liquid ratio and reaction time produced by ANOVA 附表10固定酸濃度、反應溫度及時間之3因子ANOVA分析結果168 Subtable 10 The interaction between acid concentration, reaction temperature and reaction time produced by ANOVA 附表11固定固液比、反應溫度及時間之3因子ANOVA分析結果--169 Subtable 11 The interaction between solid liquid ratio, reaction temperature and reaction time produced by ANOVA 附表12 ANOVA分析4因子交互作用結果--------------------------169 Subtable 12 The interaction of 4 factors produced by ANOVA 圖 目 次 圖1奈米纖維素之製備與纖維素/絹雲母/聚乳酸奈米複合材之研製實驗架構------------------------------------------------------------------11 Fig. 1 The flow chart of developing cellulose/sericite/polylactic acid nanocomposites 圖2.1植物細胞壁中纖維素的組成情形-------------------------------12 Fig. 2.1 The cellulose construction in plant cell wall 圖2.2 葡萄糖單體以β-1,4 鍵結形成的纖維素長鏈結構圖---------14 Fig. 2.2 Glucose β-1,4 linkage of cellulose long chain structure 圖2.3 天然纖維素之假設構造---------------------------------------16 Fig. 2.3 The hypothesis structure of native cellulose 圖2.4 纖維素Iβ型與II型的晶格排列與分子間鍵結方式------------17 Fig. 2.4 Crystal lattice and the molecular linkage of cellulose Iβand cellulose II 圖2.4 高分子聚合物分類圖--------------------------------------------25 Fig. 2.4 The classified catalogue of polymer 圖2.5乳化法使SiO2與磺酸根形成氫鍵鍵結-------------------------29 Fig. 2.5 Forming the hydrogen bond between SiO2 and sulfonate by mean of Emulsion 圖2.6絹雲母原子結構示意圖 ----------------------------------------33 Fig. 2.6 The schematic diagram of sericite atomic structure 圖2.7 TEM電子吸收示意圖--------------------------------------------35 Fig. 2.7 The schematic diagram of TEM electron absorption 圖2.8 UV-vis光路徑示意--------------------------------------------38 Fig. 2.8 Optical path of the UV-vis spectrophotometer 圖3.1硫酸水解製備奈米纖維素實驗流程圖-------------------------50 Fig. 3.1 The flowchart of nanocrystalline cellulose preparation by sulfuric acid hydrolysis 圖3.2奈米纖維素基本性質檢測流程圖-------------------------------53 Fig. 3.2 The flowchart of nanocrystalline cellulose identification 圖3.3不同酸濃度下NCC產率隨時間變化趨勢圖------------------62 Fig. 3.3 Time vs. NCCs yield produced under different acid concentrations 圖3.4粒徑分析儀誤差來源示意圖------------------------------------64 Fig. 3.4 Diagram of explanation of DLS error 圖3.5 NCC60之尺寸分布----------------------------------------------65 Fig. 3.5 Size distribution of NCC60 圖3.6 NCC55之尺寸分布----------------------------------------------65 Fig. 3.6 Size distribution of NCC55 圖3.7 NCC50之尺寸分布----------------------------------------------66 Fig. 3.7 Size distribution of NCC50 圖3.8不同水解條件下NCCs之TEM圖(放大倍率100,000倍) (a) NCC50、(b) NCC55、(c) NCC60--------------------------------------- 68 Fig. 3.8 The TEM micrographs showing the morphology of NCCs produced from different hydrolysis conditions (x 100,000): (a) NCC50, (b) NCC55, and (c) NCC60 圖3.9酸水解時間對NCC55產率的影響------------------------------70 Fig. 3.9 Influence of acid hydrolysis time on NCC55 yield 圖3.10硫酸水解產物之FTIR圖:(a)棉纖維、(b) RS50、(c) NCC55、(d) NCC50、(e) NCC60-------------------------------------------------72 Fig. 3.10 FTIR spectra of cotton linter, and NCCs: (a) cotton linter, (b) RS50, (c) NCC55, (d) NCC50, and (e) NCC60 圖3.11水解產物之CP/MAS 13CSNMR光譜: (a) 棉纖維、(b) RS50、(c) NCC50、(d) NCC55、(e) NCC60------------------------------------75 Fig. 3.11 The CP/MAS 13CSNMR spectrums of hydrolysis products (a) Cotton linter, (b) RS50, (c) NCC50, (d) NCC55, and (e) NCC60 圖3.12棉纖維與各種硫酸水解產物之小角度X-ray繞射光譜-------79 Fig. 3.12 Small angle X-ray diffraction patterns of cotton linter and hydrolysis products: (a) RS50, (b) cotton linter, (c) NCC50, (d) NCC55, and (e) NCC60 圖3.13不同水解條件下製得之水解產物TG(上)與DTG(下)曲線----83 Fig. 3.13 The TG (up) and DTG (bottom) curves of the hydrolysis products produced under different conditions 圖3.14硫酸水解纖維素之假設路徑圖--------------------------------87 Fig. 3.14 Hypothetical pathway of the cellulose sulfuric acid hydrolysis 圖4.1奈米纖維素/奈米絹雲母/聚乳酸奈米複合材料製備流程圖----90 Fig. 4.1 The flow chart of preparation of NCC/NS/PLA nanocomposites 圖4.2奈米纖維素/奈米絹雲母/聚乳酸奈米複合材料外觀-------97 Fig. 4.2 Appearance of NCC/NS/PLA nanocomposites 圖4.3純PLA薄膜之拉伸應力應變圖-------------------------------100 Fig. 4.3 Tensile stress-strain curve of pure PLA film 圖4.4 PS1~PS10拉伸應力應變圖:(a) PS1、(b) PS2、(c) PS3、(d) PS4、(e) PS5、(f) PS6、(g) PS7、(h) PS8、(i) PS9、(j) PS10-------------------101 Fig. 4.4 Tensile stress-strain curve of PS1~PS10: (a) PS1, (b) PS2, (c) PS3, (d) PS4, (e) PS5, (f) PS6, (g) PS7, (h) PS8, (i) PS9, (j) PS10 圖4.5 PC1~PC10拉伸應力應變圖:(a) PC1、(b) PC2、(c) PC3、(d) PC4、(e) PC5、(f) PC6、(g) PC7、(h) PC8、(i) PC9、(j) PC10------------102 Fig. 4.5 Tensile stress-strain curve of PC1~PC10: (a) PC1, (b) PC2, (c) PC3, (d) PC4, (e) PC5, (f) PC6, (g) PC7, (h) PC8, (i) PC9, (j) PC10 圖4.6 PS3C1~PS3C10拉伸應力應變圖:(a) PS3C1、(b) PS3C2、(c) PS3C3、(d) PS3C4、(e) PS3C5、(f) PS3C6、(g) PS3C7、(h) PS3C8、(i) PS3C9、(j) PS3C10--------------------------------------------------103 Fig. 4.6 Stress-strain curve of PS3C ~ PS3C10: (a) PS3C1, (b) PS3C2, (c) PS3C3, (d) PS3C4, (e) PS3C5, (f) PS3C6, (g) PS3C7, (h) PS3C8, (i) PS3C9, (j) PS3C10 圖4.7 奈米複合材料表面之FE-SEM圖:(a) 純PLA膜、(b) PLA經拉伸試驗破壞、(c) PC7、(d) PC7經拉伸試驗破壞、(e) PS7、(f) PS3經拉伸試驗破壞、(g) PS3C7、(h) PS3C7經拉伸試驗破壞---------110 Fig. 4.7 FE-SEM micrographs of the surfaces of the nanocomposites: (a) PLA; (b) tensile failed PLA film; (c) PC7; (d) tensile failed PC7 film; (e) PS7; (f) tensile failed PS3 film; (g) PS3C7; and (h) tensile failed PS3C7 film 圖4.8 PS3C7中PLA以NCC為中心形成之結晶區域(2萬倍)------112 Fig. 4.8 The PLA crystal domain with NCC core in PS3C7(×20,000) 圖4.9 PS3C9中PLA以NCC為中心形成之結晶區域(2萬倍)------112 Fig. 4.9 The PLA crystal domain with NCC core in PS3C9(×20,000) 圖4.10純PLA薄膜之FTIR光譜-------------------------------------114 Fig. 4.10 The FTIR spectrum of pure PLA film 圖4.11 PS10薄膜之FTIR光譜----------------------------------------114 Fig. 4.10 The FTIR spectrum of PS10 film 圖4.12 PC10薄膜之FTIR光譜----------------------------------------115 Fig. 4.12 The FTIR spectrum of PC10 film 圖4.13 PS3C7薄膜之FTIR光譜-------------------------------------115 Fig. 4.13 The FTIR spectrum of PS3C7 film 圖4.14奈米複合材料各原料之熱重損失曲線與導數熱重損失曲線(a) PLA, (b) NS, (c) NCC55 ----------------------------------------------119 Fig. 4.14 TG and DTG curves of raw materials of nanocomposites: (a) PLA, (b) NS, (c) NCC55 圖4.15 PS1~PS10之熱重損失曲線以及導數熱重損失曲線(a) PS1、(b) PS2、(c) PS3、(d) PS4、(e) PS5、(f) PS6、(g) PS7、(h) PS8、(i) PS9、(j) PS10-----------------------------------------------------------------122 Fig. 4.15 TG and DTG curves of nanocomposites PS1~PS10: (a) PS1, (b) PS2, (c) PS3, (d) PS4, (e) PS5, (f) PS6, (g) PS7, (h) PS8, (i) PS9, (j) PS10 圖4.16 PC1~PC10之熱重損失曲線以及導數熱重損失曲線:(a) PC1、(b) PC6、(c) PC3、(d) PC4、(e) PC5、(f) PC6、(g) PC7、(h) PC8、(i) PC9、(j) PC10---------------------------------------------------------------125 Fig. 4.16 TG and DTG curves of nanocomposites PC1~PC10: (a) PC1, (b) PC2, (c) PC3, (d) PC4, (e) PC5, (f) PC6, (g) PC7, (h) PC8, (i) PC9, (j) PC10 圖4.17 PS3C1~PS3C10之熱重損失曲線以及導數熱重損失曲線:(a) PS3C1、(b) PS3C2、(c) PS3C3、(d) PS3C4、(e) PS3C5、(f) PS3C6、(g) PS3C7、(h) PS3C8、(i) PS3C9、(j) PS3C10------------------------128 Fig. 4.17 TG and DTG curves of nanocomposites PS3C1~PS3C10: (a) PS3C1, (b) PS3C2, (c) PS3C3, (d) PS3C4, (e) PS3C5, (f) PS3C6, (g) PS3C7, (h) PS3C8, (i) PS3C9, (j) PS3C10 圖4.18 奈米複合材PS1~PS10之熱機械分析圖:(a) PLA、(b) PS1、(c) PS2、(d) PS3、(e) PS4、(f) PS5、(g) PS6、(h) PS7、(i) PS8、(j) PS9、(k) PS10---------------------------------------------------------------132 Fig. 4.18 DMA thermo-grams of nanocomposites PS1~PS10: (a) PLA, (b) PS1, (c) PS2, (d) PS3, (e) PS4, (f) PS5, (g) PS6, (h) PS7, (i) PS8, (j) PS9, (k) PS10 圖4.19奈米複合材PC1~PC10熱機械分析圖:(a) PC1、(b) PC6、(c) PC3、(d) PC4、(e) PC5、(f) PC6、(g) PC7、(h) PC8、(i) PC9、(j) PC10 --------------------------------------------------------------------------134 Fig. 4.19 DMA thermo-grams of nanocomposites PC1~PC10: (a) PC1, (b) PC2, (c) PC3, (d) PC4, (e) PC5, (f) PC6, (g) PC7, (h) PC8, (i) PC9, (j) PC10 圖4.20奈米複合材PS3C1~PS3C10之熱機械分析圖:(a) PS3C1、(b) PS3C2、(c) PS3C3、(d) PS3C4、(e) PS3C5、(f) PS3C6、(g) PS3C7、(h) PS3C8、(i) PS3C9、(j) PS3C10------------------------------------136 Fig. 4.20 DMA thermo-grams of nanocomposites PS3C1~PS3C10: (a) PS3C1, (b) PS3C2, (c) PS3C3, (d) PS3C4, (e) PS3C5, (f) PS3C6, (g) PS3C7, (h) PS3C8, (i) PS3C9, (j) PS3C10 圖4.21奈米複合材料各原料之紫外光穿透率:(a)PLA、(b)NCC55、(c)NS -------------------------------------------------------------------139 Fig. 4.21 UV transmittance of the materials used to form nanocomposite. (a) PLA, (b) NCC55, (c) NS 圖4.22 PLA中NS與NCC之堆疊模式假設圖---------------------------143 Fig. 4.22 Hypothesis aggregating model of NS and NCC in PLA 附圖1 硫酸水解產物之1HSNMR光譜:(a) 棉纖維、(b) NCC50、(c) RS50、(d) NCC55、(e)NCC60------------------------------------------171 Subfig. 1 The 1HSNMR spectrum of sulfuric acid hydrolysis yields: (a) cotton linter, (b) NCC50, (c) RS50, (d) NCC55, (e) NCC60 附圖2 硫酸濃度50%、固液比1:10、反應溫度45℃、反應時間5 min製得之奈米纖維素尺寸分布------------------------------------------172 Subfig. 2 The size distribution of nanocellulose produced under acid concentration 50 %, solid/liquid ratio 1:10, reaction temperature 45℃ and reaction time 5 min. 附圖3 硫酸濃度50 %、固液比1:10、反應溫度45℃、反應時間15 min製得之奈米纖維素尺寸分布------------------------------------------173 Subfig. 3 The size distribution of nanocellulose produced under acid concentration 50 %, solid/liquid ratio 1:10, reaction temperature 45℃ and reaction time 15 min. 附圖4 硫酸濃度50 %、固液比1:10、反應溫度55℃、反應時間5 min製得之奈米纖維素尺寸分布------------------------------------------174 Subfig. 4 The size distribution of nanocellulose produced under acid concentration 50 %, solid/liquid ratio 1:10, reaction temperature 55℃ and reaction time 5 min. 附圖5 硫酸濃度50%、固液比1:10、反應溫度55 ℃、反應時間15 min製得之奈米纖維素尺寸分布------------------------------------------175 Subfig. 5 The size distribution of nanocellulose produced under acid concentration 50 %, solid/liquid ratio 1:10, reaction temperature 55℃ and reaction time 15 min. 附圖6 硫酸濃度50%、固液比1:20、反應溫度45 ℃、反應時間5 min製得之奈米纖維素尺寸分布------------------------------------------176 Subfig. 6 The size distribution of nanocellulose produced under acid concentration 50 %, solid/liquid ratio 1:20, reaction temperature 45℃ and reaction time 5 min 附圖7 硫酸濃度50 %、固液比1:20、反應溫度45℃、反應時間15 min製得之奈米纖維素尺寸分布------------------------------------------177 Subfig. 7 The size distribution of nanocellulose produced under acid concentration 50 %, solid/liquid ratio 1:20, reaction temperature 45℃ and reaction time 15 min. 附圖8 硫酸濃度50 %、固液比1:20、反應溫度55℃、反應時間5 min製得之奈米纖維素尺寸分布------------------------------------------178 Subfig. 8 The size distribution of nanocellulose produced under acid concentration 50 %, solid/liquid ratio 1:20, reaction temperature 55℃ and reaction time 5 min. 附圖9 硫酸濃度50 %、固液比1:20、反應溫度55℃、反應時間15 min製得之奈米纖維素尺寸分布------------------------------------------179 Subfig. 9 The size distribution of nanocellulose produced under acid concentration 50 %, solid/liquid ratio 1:20, reaction temperature 55℃ and reaction time 15 min. 附圖10 硫酸濃度60 %、固液比1:10、反應溫度45℃、反應時間5 min製得之奈米纖維素尺寸分布------------------------------------------180 Subfig. 10 The size distribution of nanocellulose produced under acid concentration 60 %, solid/liquid ratio 1:10, reaction temperature 45℃ and reaction time 5 min. 附圖11 硫酸濃度60 %、固液比1:10、反應溫度45℃、反應時間15 min製得之奈米纖維素尺寸分布-----------------------------------------181 Subfig. 11 The size distribution of nanocellulose produced under acid concentration 60 %, solid/liquid ratio 1:10, reaction temperature 45℃ and reaction time 15 min 附圖12 硫酸濃度60 %、固液比1:10、反應溫度55℃、反應時間5 min製得之奈米纖維素尺寸分布------------------------------------------182 Subfig. 12 The size distribution of nanocellulose produced under acid concentration 60 %, solid/liquid ratio 1:10, reaction temperature 55℃ and reaction time 5 min. 附圖13 硫酸濃度60%、固液比1:10、反應溫度55 ℃、反應時間15 min製得之奈米纖維素尺寸分布------------------------------------------183 Subfig. 13 The size distribution of nanocellulose produced under acid concentration 60 %, solid/liquid ratio 1:10, reaction temperature 55℃ and reaction time 15 min. 附圖14 硫酸濃度60 %、固液比1:20、反應溫度45℃、反應時間5 min製得之奈米纖維素尺寸分布------------------------------------------184 Subfig. 14 The size distribution of nanocellulose produced under acid concentration 60 %, solid/liquid ratio 1:20, reaction temperature 45℃ and reaction time 5 min. 附圖15 硫酸濃度60 %、固液比1:20、反應溫度45℃、反應時間15 min製得之奈米纖維素尺寸分布----------------------------------------185 Subfig. 15 The size distribution of nanocellulose produced under acid concentration 60 %, solid/liquid ratio 1:20, reaction temperature 45℃ and reaction time 15 min. 附圖16 硫酸濃度60 %、固液比1:20、反應溫度55℃、反應時間5 min製得之奈米纖維素尺寸分布------------------------------------------186 Subfig. 16 The size distribution of nanocellulose produced under acid concentration 60 %, solid/liquid ratio 1:20, reaction temperature 55℃ and reaction time 5 min. 附圖17 硫酸濃度60 %、固液比1:20、反應溫度55℃、反應時間15 min製得之奈米纖維素尺寸分布----------------------------------------187 Subfig. 17 The size distribution of nanocellulose produced under acid concentration 60 %, solid/liquid ratio 1:20, reaction temperature 55℃ and reaction time 15 min. 附圖18 奈米絹雲母尺寸分布----------------------------------------188 Subfig. 18 The size distribution of nanosericite. 附圖 19 奈米複合材料PS1表面之FE-SEM圖----------------------189 Subfig. 19 FE-SEM micrographs of the surfaces of the nanocomposites PS1 附圖 20 奈米複合材料PS3表面之FE-SEM圖----------------------189 Subfig. 20 FE-SEM micrographs of the surfaces of the nanocomposites PS3 附圖 21 奈米複合材料PS5表面之FE-SEM圖----------------------190 Subfig. 21 FE-SEM micrographs of the surfaces of the nanocomposites PS5 附圖 22 奈米複合材料PS9表面之FE-SEM圖----------------------190 Subfig. 22 FE-SEM micrographs of the surfaces of the nanocomposites PS9 附圖 23 奈米複合材料PC1表面之FE-SEM圖----------------------191 Subfig. 23 FE-SEM micrographs of the surfaces of the nanocomposites PC1 附圖 24 奈米複合材料PC3表面之FE-SEM圖----------------------191 Subfig. 24 FE-SEM micrographs of the surfaces of the nanocomposites PC3 附圖 25 奈米複合材料PC5表面之FE-SEM圖----------------------192 Subfig. 25 FE-SEM micrographs of the surfaces of the nanocomposites PC5 附圖 26 奈米複合材料PC9表面之FE-SEM圖----------------------192 Subfig. 26 FE-SEM micrographs of the surfaces of the nanocomposites PC9 附圖 27 奈米複合材料PS3C1表面之FE-SEM圖-------------------193 Subfig. 27 FE-SEM micrographs of the surfaces of nanocomposites PS3C1 附圖 28 奈米複合材料PS3C3表面之FE-SEM圖-------------------193 Subfig. 28 FE-SEM micrographs of the surfaces of nanocomposites PS3C3 附圖 29 奈米複合材料PS3C5表面之FE-SEM圖------------------194 Subfig. 29 FE-SEM micrographs of the surfaces of nanocomposites PS3C5 附圖 30 奈米複合材料PS3C3表面產生PLA結晶之FE-SEM圖---194 Subfig. 30 FE-SEM micrographs of the surfaces with PLA crystal of nanocomposites PS3C3 附圖 31 奈米複合材料PS3C5表面產生PLA結晶之FE-SEM圖---195 Subfig. 31 FE-SEM micrographs of the surfaces with PLA crystal of nanocomposites PS3C5 附圖 32 奈米複合材料PC9表面產生PLA結晶之FE-SEM圖-----195 Subfig. 32 FE-SEM micrographs of the surfaces with PLA crystal of nanocomposites PC9 附圖33 奈米複合材料PS1在波長200~400 nm間之紫外光穿透率--------------------------------------------------------------------------196 Subfig. 33 UV transmittance rate of nanocomposite PS1 between wavelength 200~400 nm 附圖34 奈米複合材料PS2在波長200~400 nm間之紫外光穿透率--------------------------------------------------------------------------196 Subfig. 34 UV transmittance rate of nanocomposite PS2 between wavelength 200~400 nm 附圖35 奈米複合材料PS3在波長200~400 nm間之紫外光穿透率--------------------------------------------------------------------------197 Subfig. 35 UV transmittance rate of nanocomposite PS3 between wavelength 200~400 nm 附圖36 奈米複合材料PS4在波長200~400 nm間之紫外光穿透率--------------------------------------------------------------------------197 Subfig. 36 UV transmittance rate of nanocomposite PS4 between wavelength 200~400 nm 附圖37 奈米複合材料PS5在波長200~400 nm間之紫外光穿透率--------------------------------------------------------------------------198 Subfig. 37 UV transmittance rate of nanocomposite PS5 between wavelength 200~400 nm 附圖38 奈米複合材料PS6在波長200~400 nm間之紫外光穿透率--------------------------------------------------------------------------198 Subfig. 38 UV transmittance rate of nanocomposite PS6 between wavelength 200~400 nm 附圖39 奈米複合材料PS7在波長200~400 nm間之紫外光穿透率--------------------------------------------------------------------------199 Subfig. 39 UV transmittance rate of nanocomposite PS7 between wavelength 200~400 nm 附圖40 奈米複合材料PS8在波長200~400 nm間之紫外光穿透率--------------------------------------------------------------------------199 Subfig. 40 UV transmittance rate of nanocomposite PS8 between wavelength 200~400 nm 附圖41 奈米複合材料PS9在波長200~400 nm間之紫外光穿透率--------------------------------------------------------------------------200 Subfig. 41 UV transmittance rate of nanocomposite PS9 between wavelength 200~400 nm 附圖42 奈米複合材料PS10在波長200~400 nm間之紫外光穿透率--------------------------------------------------------------------------200 Subfig. 42 UV transmittance rate of nanocomposite PS10 between wavelength 200~400 nm 附圖43 奈米複合材料PC1在波長200~400 nm間之紫外光穿透率--------------------------------------------------------------------------201 Subfig. 43 UV transmittance rate of nanocomposite PC1 between wavelength 200~400 nm 附圖44 奈米複合材料PC2在波長200~400 nm間之紫外光穿透率--------------------------------------------------------------------------201 Subfig. 44 UV transmittance rate of nanocomposite PC2 between wavelength 200~400 nm 附圖45 奈米複合材料PC3在波長200~400 nm間之紫外光穿透率--------------------------------------------------------------------------202 Subfig. 45 UV transmittance rate of nanocomposite PC3 between wavelength 200~400 nm 附圖46 奈米複合材料PC4在波長200~400 nm間之紫外光穿透率--------------------------------------------------------------------------202 Subfig. 46 UV transmittance rate of nanocomposite PC4 between wavelength 200~400 nm 附圖47 奈米複合材料PC5在波長200~400 nm間之紫外光穿透率--------------------------------------------------------------------------203 Subfig. 47 UV transmittance rate of nanocomposite PC5 between wavelength 200~400 nm 附圖48 奈米複合材料PC6在波長200~400 nm間之紫外光穿透率--------------------------------------------------------------------------203 Subfig. 48 UV transmittance rate of nanocomposite PC6 between wavelength 200~400 nm 附圖49 奈米複合材料PC7在波長200~400 nm間之紫外光穿透率--------------------------------------------------------------------------204 Subfig. 49 UV transmittance rate of nanocomposite PC7 between wavelength 200~400 nm 附圖50 奈米複合材料PC8在波長200~400 nm間之紫外光穿透率--------------------------------------------------------------------------204 Subfig. 50 UV transmittance rate of nanocomposite PC8 between wavelength 200~400 nm 附圖51 奈米複合材料PC9在波長200~400 nm間之紫外光穿透率--------------------------------------------------------------------------205 Subfig. 51 UV transmittance rate of nanocomposite PC9 between wavelength 200~400 nm 附圖52 奈米複合材料PC10在波長200~400 nm間之紫外光穿透率--------------------------------------------------------------------------205 Subfig. 52 UV transmittance rate of nanocomposite PC10 between wavelength 200~400 nm 附圖53 奈米複合材料PS3C1在波長200~400 nm間之紫外光穿透率--------------------------------------------------------------------------206 Subfig. 53 UV transmittance rate of nanocomposite PS3C1 between wavelength 200~400 nm 附圖54 奈米複合材料PS3C2在波長200~400 nm間之紫外光穿透率--------------------------------------------------------------------------206 Subfig. 54 UV transmittance rate of nanocomposite PS3C2 between wavelength 200~400 nm 附圖55 奈米複合材料PS3C3在波長200~400 nm間之紫外光穿透率--------------------------------------------------------------------------207 Subfig. 55 UV transmittance rate of nanocomposite PS3C3 between wavelength 200~400 nm 附圖56 奈米複合材料PS3C4在波長200~400 nm間之紫外光穿透率--------------------------------------------------------------------------207 Subfig. 56 UV transmittance rate of nanocomposite PS3C4 between wavelength 200~400 nm 附圖57 奈米複合材料PS3C5在波長200~400 nm間之紫外光穿透率--------------------------------------------------------------------------208 Subfig. 57 UV transmittance rate of nanocomposite PS3C5 between wavelength 200~400 nm 附圖58 奈米複合材料PS3C6在波長200~400 nm間之紫外光穿透率--------------------------------------------------------------------------208Subfig. 58 UV transmittance rate of nanocomposite PS3C6 between wavelength 200~400 nm 附圖59 奈米複合材料PS3C7在波長200~400 nm間之紫外光穿透率--------------------------------------------------------------------------209 Subfig. 59 UV transmittance rate of nanocomposite PS3C7 between wavelength 200~400 nm 附圖60 奈米複合材料PS3C8在波長200~400 nm間之紫外光穿透率--------------------------------------------------------------------------209 Subfig. 60 UV transmittance rate of nanocomposite PS3C8 between wavelength 200~400 nm 附圖61 奈米複合材料PS3C9在波長200~400 nm間之紫外光穿透率--------------------------------------------------------------------------210 Subfig. 61 UV transmittance rate of nanocomposite PS3C9 between wavelength 200~400 nm 附圖62 奈米複合材料PS3C10在波長200~400 nm間之紫外光穿透率-------------------------------------------------------------------------210 Subfig. 62 UV transmittance rate of nanocomposite PS3C10 between wavelength 200~400 nmzh_TW
dc.language.isoen_USzh_TW
dc.publisher森林學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2308201003114300en_US
dc.subject棉漿zh_TW
dc.subjectcotton linteren_US
dc.subject奈米纖維素zh_TW
dc.subject硫酸水解zh_TW
dc.subject13C固態核磁共振zh_TW
dc.subject熱重分析zh_TW
dc.subject聚乳酸zh_TW
dc.subject奈米纖維素zh_TW
dc.subject奈米絹雲母zh_TW
dc.subject紫外光穿透率zh_TW
dc.subjectnanocrystalline celluloseen_US
dc.subjectsulfuric acid hydrolysisen_US
dc.subject13C solid state nuclear magnetic resonanceen_US
dc.subjectthermo-gravimetric analysisen_US
dc.subjectpolylactic aciden_US
dc.subjectnanocrystalline celluloseen_US
dc.subjectnanosericiteen_US
dc.subjectUV transmittanceen_US
dc.title奈米纖維素製備、分析與其共混奈米絹雲母對聚乳酸薄膜性能改善之研究zh_TW
dc.titlePreparation and characterization of Nanocrystalline Cellulose and the Effects of its Compounding with Nano-sericite on the Property Improvements of Polylactic Acid Composite Films.en_US
dc.typeThesis and Dissertationzh_TW
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypeThesis and Dissertation-
Appears in Collections:森林學系
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.