Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/6612
DC FieldValueLanguage
dc.contributor林志明zh_TW
dc.contributorZhi-Ming Linen_US
dc.contributor張振豪zh_TW
dc.contributorChen-Hao Changen_US
dc.contributor.advisor林泓均zh_TW
dc.contributor.advisorHong-Chin Linen_US
dc.contributor.author蔡煊禹zh_TW
dc.contributor.authorTsai, Hsuan-Yuen_US
dc.contributor.other中興大學zh_TW
dc.date2007zh_TW
dc.date.accessioned2014-06-06T06:38:36Z-
dc.date.available2014-06-06T06:38:36Z-
dc.identifierU0005-2107200610052400zh_TW
dc.identifier.citation[1] 王朝慶, “應用於微機電麥克風之可調整增益預先放大器設計,” 中興大學碩士論文, Jun 2005. [2] 陳利如, “實現低雜訊及低失真的CMOS全差動截波穩定型放大器,” 中興大學碩士論文, Jul 2005. [3] B. Razavi, “Design of Analog CMOS Integrated Circuits,” New York, NY: McGraw-Hill, 2001. [4] Phillip E. Allen, R. Holberg, “CMOS Analog Circuit Design,” 2nd ed. New York, NY: Oxford, 2002. [5] David A. Johns, Ken Martin, “Analog Integrated circuit Design,” Canada: Wiley, 1996. [6] R. Gregorian, “Introduction to CMOS OP-Amps and Cmparators ” Wiley, 1999. [7] M. Pedersen, W. Olthuis, P. Bergveld, “A polymer condenser microphone on silicon with on-chip CMOS amplifier,” Int. conf. Solid-State Sensors and Actuators, vol. 1, pp. 445-446, 1997. [8] P. Murphy, K. Hubschi, N. De Rooij, C. Racine, “Subminiature silicon integrated electret capacitor microphone,” IEEE Trans. Electrical Insulation, vol. 24, no. 6, pp. 495-498, Jun. 1989. [9] M. Brauer, A. Dehe, M. Fuldner, S. Barzen, R. Laur, “Improved signal-to-noise ratio of silicon microphone by a high-impedance resistor,” J. Micromechanics and Microengineering, vol. 14, no. 9, pp. S86-S89, Sep. 2004. [10] R. Nadal-Guardia, A.M. Brosa, A. Dehe, “Constant charge operation of capacitor sensors based on switched-current circuits,” IEEE J. Sensors, vol. 3, no. 6, pp. 835-842, Dec. 2003. [11] M. Pedersen, W. Olthusi, P. Bergveld, “High-Performance Condenser Microphone with Fully Integrated CMOS Amplifier and DC-DC Voltage Converter,” IEEE J. Microelectromechanical Systems, vol. 7, No. 4, Dec 1998 [12] G. Nicollini, C. Guardiani, “A 3.3-V 800-nVrms noise, gain- programmable CMOS microphone preamplifier design using yield modeling technique,” IEEE J. Solid-State Circuits, vol. 28, no. 8, pp. 915-921, Aug. 1993. [13] C.E. Furst, “A Low-Noise/Low-Power Preamplifier for Capacitive Microphones,” IEEE Int. Symp. Circuits and Systems, vol 1, no. 12-15, pp. 477-480, May 1996. [14] E. Sackinger, W. Guggenbuhl, “A Versatile Building Block: The CMOS Differential Difference Amplifier,” IEEE J. Solid-State Circuits, vol. sc-22, no. 2, pp. 287-294, Apr. 1987. [15] A.V. Rhijn, “Integrated Circuits for High Performance Electret Microphones,” Audio Engineering Society Convention, Amsterdan, The Netherlands, Mar. 2003. [16] K.C. Hsieh, P.R. Gray, “A Low-Noise Chopper-Stabilized Differential Switched-Capacitor Filtering Technique,” IEEE J. Solid-State Circuits, vol. 16, no. 6, pp.128-131, Feb 1981. [17] C.C. Enz, G.C. Temes, “Circuit Techniques for Reducing the Effects of Op-Amp Imperfections: Autozeroing, Correlated Double Sampling, and Chopper Stabilization,” Proceedings of IEEE, vol. 84, no. 11, pp. 1584-1614, Nov 1996. [18] P.K. Chan, K.A. Ng, X.L. Zhang, “A CMOS Chopper-Stabilized Differential Difference Amplifier for Biomedical Integrated Circuits,” IEEE Int. Symp. Circuits and Systems. pp. III 33-36, 2004. [19] K.A. Ng, P.K. Chan, “A CMOS Analog Front-End IC for Portable EEG/ECG Monitoring Applications,” IEEE J. Transactions on Circuits and Systems, vol. 52, no. 11, pp. 2335-2347, Nov 2005. [20] Lee B. Sung, Loeppert V. Peter, “An impedance spectroscopic study of MEMS microphones,” Proceedings of IEEE Sensors, vol. 1, no. 2, pp. 1250-1255, 2002. [21] M.W. Baker, R. Sarpeshkar, “A Low-Power High-PSRR Current-Mode Microphone Preamplifier,” IEEE J. Solid-State Circuits, vol. 38, no. 10, pp. 1671-1678, Oct. 2003. [22] J. Silva-Martinez, J. Alcedo-Suner, “A CMOS preamplifier for electret microphones,” IEEE Int. Symp. Circuits and Systems, vol. 3, pp. 1868-1871, May 1995. [23] J. Silva-Martinez, J. Alcedo-Suner, “Low Frequency Amplifiers for Electret Microphones,” Proceedings of the 38th Midwest Symp. Circuits and Systems, vol. 3, pp. 1018-1021, Aug 1995. [24] M. Brauer, A. Dehe, M. Fuldner, R. Law, “Increasing the performance of silicon microphones by the benefit of a complete system simulation,” IEEE Int. conf. Micro Electro Mechanical Systems (MEMS), pp. 528-531, 2004. [25] P.R. Scheeper, B. Nordstrand , J.O. Gullov, Bin Liu, T. Clausen, L. Midjord, T. Storgaard-Larsen, “A new measurement microphone based on MEMS technology,” J. Microelectromechanical Systems, vol. 12, no. 6, pp. 880-891, Dec. 2003. [26] M.S. Bai, S.W. Huang, C.P. Lin, “Silicon micromachined condenser microphone array for bionic ears,”IEEE Int. Conf. Networking, Sensing and Control, vol. 2, pp. 819-829. 2004. [27] Tengge Ma, Tsz Yin Man, Yick Chuen Chan, Yitshak Zohar, Man Wong, “Design and fabrication of an integrated programmable floating-gate microphone,” Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), pp. 288-291, 2002. [28] W.H. Hsieh, Tseng-Yang Hsu, Yu-Chong Tai, “Micromachined thin-film Teflon electret microphone,” Int. Conf. Solid-State Sensors and Actuators, vol. 1, pp. 425-428, 1997. [29] [Online] http://www.knowlesacoustics.com/html/silicon_faqs.html #Charge-Pump [30] Madaffari, “Amplifier with reduced input capacitance,” U.S. patent 6,023,194, Feb 2000. [31] A.M. Lafort, “High Impedance Bias Circuit,” U.S. patent 6,353,344 B1, Mar 2002. [32] Chung Dam Song, Eek Joo Chung, Hyun Ho, “SMD Type Biased Condenser Microphone,” U.S. patent 0,123,155 A1, Jun 2005. [33] National Semiconductor, “Pre-Amplified IC’s for High Gain 2-Wire Microphones LMV1012 Analog Series,” Oct 2005 [34] SANYO, “Electret Condenser Microphone Applications – TF202 Datasheet. ”zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/6612-
dc.description.abstract本論文提出了一個運用於駐極體式/純電容式麥克風之含預放大截波器之差動差別放大器;最常見的麥克風預先放大器設計為源極隨耦器(Source Follower)電路,可對麥克風做阻抗轉換並有效地讀出訊號,但單端放大器對共模雜訊和電源雜訊的抵制能力不足,而線性度的表現也比較差;之後有人提出差動差別放大器(Differential Difference Amplifier)的架構,具有很高的共模拒斥比,但是仍無法克服低頻雜訊的問題。所以本文加入截波穩定放大器原理,利用振幅調變(Amplitude Modulation)技巧,將預先放大器本身所產生的低頻雜訊以及輸入偏移電壓所造成的誤差降低;最後,結合源極隨耦器、差動差別放大器和截波穩定放大器的特點,提出一個新的麥克風預先放大器;其輸入阻抗超過100 GΩ,電壓增益為21dB,共模拒斥比為115dB,電源拒斥比為64.8dB;聲音的頻率為20Hz ~ 20kHz,而本預先放大器在上述特性模擬的頻寬皆能大於20kHz。在電路實作上,使用TSMC 0.35μm CMOS 2P4M製程模擬並下線,晶片面積是0.5mm²,電源電壓為1.5V~3V,功率消耗為463μW。zh_TW
dc.description.abstractThis thesis proposes a differential difference amplifier with preamplified choppers for electret / condenser microphones. The most popular microphone preamplifier is source follower circuit. It can convert the impedance of microphone and extract the audio signals effectively. However, the single-ended amplifier's noise rejection capability for common mode noise and power supply noise is not good enough, the linearity is also not quite well. Some papers propose the structure of differential difference amplifier to achieve high common mode rejection ratio (CMRR). However, the low frequency noise is still a problem to be overcome. Therefore, this thesis adds the theorem of the chopper stabilized amplifier by using the amplitude modulation skills to minimize the errors due to input offset and low frequency noise. Eventually, we combine the characteristics of source follower, differential difference amplifier, and chopper stabilized amplifier to generate a new powerful microphone preamplifier. The input impedance is larger than 100GΩ, with 21dB voltage gain, 115dB CMRR, and 64.8dB PSRR. Because the audio frequency range is 20Hz ~ 20kHz, the bandwidth is wider than 20kHz to meet the requirement. The new preamplifier has been simulated and fabricated using TSMC 0.35um CMOS 2P4M technology in area of 0.5mm² for 1.5V ~ 3V supply voltages and the power consumption is 463uW.en_US
dc.description.tableofcontents誌謝辭 i 摘要(中文) ii 摘要(英文) iii 目次 iv 圖目次 vii 表目次 xi 第一章 序論 1 1.1研究動機 1 1.2微機電麥克風種類以及偏壓電路 2 1.2.1微機電電容式麥克風與偏壓電路 2 1.2.2微機電駐極體式麥克風與偏壓電路 6 1.2.3微機電電容式與駐極體式麥克風之整合偏壓電路 8 第二章 麥克風預先放大器電路設計原理 9 2.1麥克風預放大器設計規格 9 2.1.1麥克風預先放大器輸入偏壓電阻 9 2.1.2麥克風預先放大器輸入之寄生效應 11 2.1.3麥克風預先放大器雜訊特性 12 2.1.4麥克風預先放大器線性度特性 16 2.1.5麥克風預先放大器之CMRR和PSRR 18 2.2過去的麥克風預先放大器設計 20 2.2.1源極隨耦器與緩衝預先放大器 20 2.2.2運算轉導放大器 22 第三章 新型麥克風預先放大器電路設計 26 3.1麥克風預先放大器設計規格 26 3.2已實作的麥克風預先放大器設計 27 3.2.1源極隨耦器與緩衝器電路 27 3.2.2差動差別放大器 29 3.3新式麥克風預先放大器設計架構 34 3.3.1截波穩定型放大器原理 34 3.3.2含預放大截波器之差動差別放大器架構 37 3.3.3時脈產生器 39 3.3.4調變器/解調變器 39 3.3.5源極隨耦器 42 3.3.6差動差別放大器 45 3.3.7雙端輸入轉單端輸出放大器 46 3.3.8頻率補償元件 47 3.3.9低通濾波器 48 第四章 電路的模擬、實作與比較 49 4.1製程選擇與模擬環境 49 4.2電路的模擬 54 4.2.1開迴路頻率響應模擬 54 4.2.2閉迴路頻率響應模擬 55 4.2.3共模拒斥比模擬 56 4.2.4電源拒斥比模擬 56 4.2.5總諧波失真模擬 57 4.3電路的實作 59 4.4量測環境的建構 61 4.4.1雜訊防護 64 4.5規格與比較 66 第五章 結論與未來工作 68 5.1結論 68 5.2未來工作 69 參考書目 70zh_TW
dc.language.isoen_USzh_TW
dc.publisher電機工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2107200610052400en_US
dc.subjectelectret condenser microphoneen_US
dc.subject駐極體式麥克風zh_TW
dc.subjectcondenser microphoneen_US
dc.subjectdifferential defference amplifieren_US
dc.subjectDDAen_US
dc.subjectchopper-stabilized amplifieren_US
dc.subjectCHSen_US
dc.subjectpreamplifieren_US
dc.subject電容式麥克風zh_TW
dc.subject差動差別放大器zh_TW
dc.subject截波穩定型放大器zh_TW
dc.subject預先放大器zh_TW
dc.title運用於駐極體式/純電容式麥克風之含預放大截波器之差動差別放大器zh_TW
dc.titleA Differential Difference Amplifier with Preamplified Choppers for Electret/Condenser Microphonesen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:電機工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.