Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/66132
標題: 不同海拔天然闊葉林林地養分聚積及枯落物養分的輸入
Nutrient Accumulation and Litterfall Return of Natural Hardwood among Different Elevation in Central Taiwan
作者: 呂淑瑋
Lu, Shu-Wei
關鍵字: Litterfall;枯落物;Natural hardwood;Elevation;Decomposition constant;Nutrient;天然闊葉林;海拔;分解常數;養分
出版社: 森林學系所
引用: 王雪卿 (2008) 台灣中部低海拔天然林與人工林枯落物、枯落物分解、土壤養分之比較。彰化師範大學地理學系碩士論文。 朱佩綺 (2005) 臺大實驗林神木溪保護林兩相鄰分枯落物動態其及養分之研究。國立臺灣大學植物學研究所碩士論文。 朱慧君 (2005) 臺灣扁柏森林生態系養分存量與枯落物養分流量之研究。國立東華大學自然資源管理研究所碩士論文。 呂金城、歐辰雄 (1996) 關刀溪長期生態研究區森林植群之初步研究(1)。中興大學實驗林報告 18 (1): 77-108。 林世宗 (1989) 不同栽植距離下柳杉林分之生長及其養分動態之研究。國立台灣大學森林學研究所博士論文。 林世宗 (1998) 棲蘭山闊葉林枯落物及其養分之變動。中華林學季刊 31 (2): 115-130。 林國銓 (1997) 福山闊葉林枯落物及枝葉層之動態變化。台灣林業科學 12 (2): 135-144。 林國銓、陳永修、杜清澤、黃菊美 (2008) 六龜台灣杉人工林枯落物之動態變化。中華林學季刊 41 (3): 351-363。 林讚標 (1996) 林木種子採集、處理、儲藏、休眠與發芽。台灣省林業試驗所 易希道 (1996) 最新植物生理學。環球書社 周育如 (2003) 惠蓀林場枯落物養分迴歸量與分解速率之季節變動。國立中興大學森林學研究所碩士論文。 洪淑芬 (2003) 腦寮溪天然闊葉林枯落物雨林地養分動態之研究。國立中興大學森林學研究所碩士論文。 柯淑惠 (2006) 台灣櫸人工林生物量及碳儲存量之研究。國立中興大學森林學研究所碩士論文。 洪富文、游漢明、馬復京 (1995) 1994年颱風使福山闊葉林的年枯落物量加倍。林業試驗所研究報告季刊 10: 485-491。 侯智雄 (2008) 北東眼山溫帶常綠闊葉林木本植物社會11年期動態。靜宜大學生態學研究所碩士論文。 鹿兒陽、朱珮綺、沈介文、彭靖媛 (2005) 台大實驗林神木溪保護林闊葉林及竹林枯落物動態研究。臺灣大學生物資源暨農學院實驗林研究報告 19 (2): 147-160。 鹿兒陽、朱珮綺、傅國銘、沈介文、彭靖媛、許崑衍 (2007) 臺灣中部觀山天然闊葉林枯落物動態及養分研究。中華林學季刊40 (4): 481-495。 鹿兒陽、梁治文、周瑞龍、彭靖媛、劉素玲 (2003) 相鄰人工木荷、杉木、孟宗竹林分的枯落物研究:枯落物動態。臺灣大學生物資源暨農學院實驗林研究報告 17 (3): 171-185。 陳佳慧 (2000) 關刀溪不同林分枯落物及土壤養分含量之動態變化。國立中興大學森林學研究所碩士論文。 陸象豫、漆陞忠、盧惠生 (1988b) 不同林相枯枝落葉層物理集水文特性之研究。林業試驗所研究報告季刊 3 (1): 363-377。 張正平 (1998) 南仁山低地雨林凋落物之研究。台灣大學植物學研究所碩士論文。 張峻德、徐正鍾 (1987) 柳杉、杉木林脫落枝葉量及養分含量之季節變化。中華林學季刊 20(4): 47-64。 張朝婷 (2005) 台灣地區不同海拔之森林土壤碳及養分庫存的研究。台灣大學森林環境暨資源學系碩士論文。 張華洲 (1997) 惠蓀實驗林場三種林分枯枝落葉量及其養分含量之季節變動。國立中興大學森林學研究所碩士論文。 張嘉玲 (2004) 惠蓀林場不同林分枯落物量及其養分含量之動態變化。國立中興大學森林學研究所碩士論文。 廖玉琬、徐善德、林美華、謝永祥、吳弘達、鐘仁彬 (1999) 植物生理學。啟英文化事業有限公司。 廖駿豪 (2006) 墾丁高位珊瑚礁自然保留區森林生態系中凋落物量與土壤養分動態之關係。國立屏東科技大學環境工程與科學系碩士論文。 劉俊毅 (2008) 棲蘭山區臺灣扁柏老熟林及次生林枯落物養分動態。國立臺灣大學森林環境暨資源學系碩士論文。 劉湘瑤 (1994) 南仁山亞熱帶雨林凋落物量及其養分含量的研究。國立臺灣大學森林環境暨資源學系碩士論文。 劉興旺 (1985) 柳杉枯落物量及養分含量之年齡及季節變化。台灣大學森林學研究所碩士論文。 蕭怡茹、王立志 (2005) 烏來地區次生闊葉林、桂竹人工林、柳杉人工林之枯落物動態。臺灣大學生物資源暨農學院實驗林研究報告 19 (3): 217-230。 顏江河、向韻如 (2007) 以林地區塊法估算埔里及巒大事業區森林土壤有機碳庫。台灣林業科學 22 (4): 469-482。 蘇鴻傑 (1984) 台灣天然林氣候帶與植群型之研究 (二) 山地植群帶與溫度低度之關係。中華林學季刊 17 (4): 57-73。 Barlow, J., T. A. Gardner, L. V. Ferreira and C. A. Peres (2007) Litter fall and decomposition in primary, secondary and plantation forests in the Brazilian Amazon. Forest Ecology and Management 247: 91-97. Berg, B. (2000) Litter decomposition and organic turnover in northern forest soils. Forest Ecology and Management 133: 13-22. Berg, B. and V. Meentemeyer (2001) Litter fall in some European coniferous forests as dependent on climate: a symthesis. Canadian Journal of Forest Research 31: 292-301. Berger, T. W., H. Untersteiner, M. Toplitzer and C. Neubauer (2009) Nutrient fluxes in pure and mixed stands of spruce (Picea abies) and beech (Fagus sylvatica). Plant and Soil 322: 317-342. Brown, S. J. and A. E. Lugo (1982) The storage and production of organic matter in tropical forests and their role in global carbon cycle. Biotropica 14(3): 161-187. Chapin, F. S. (1980) The mineral nutrition of wild plants. Annual Review of Ecology and Systematics 11: 233-260. Covelo, F., J. Durán and A. Gallardo (2008) Leaf resorption efficiency and proficiency in a Quercus robur population following forest harvest. Forest Ecology and Management 255: 2264-2271. Das, A. K.and P.S. Ramakrishnan (1985) Litter dynamics in khasi pine (Pinus kesiya Royle ex Gordon) of North-Eastern India. Forest Ecology and Management 10: 135-153. Dezzeo, N. and N. Chacon (2006) Nutrient fluxes in incident rainfall, throughfall, and stemflow in adjacent primary and secondary forests of the Gran Sabana, southern Venezuela. Forest Ecology and Management 234: 218-226. Domisch, T., L. Finér, J. Laine and R. Laiho (2006) Decomposition and nitrogen dynamics of litter in peat soils from two climatic regions under different temperature regimes. European Journal of Soil Biology 42: 74-81. Edward, P. J. and P. J. Grubb (1982) Studies of mineral cycling in a montane rain forest in New Guinea. IV. Soil characteristics and the division of mineral elements between vegetation and soil. Journal of Ecology 65: 943-969. Gallardo, J. F., A. Martín and I. Santa Regina (1998) Nutrient cycling in deciduous forest ecosystems of the Sierra de Gata mountains: aboveground litter production and potential nutrient return. Annals of Forest Science 55: 749-769. Garten, C. T. and P. J. Hanson (2006) Measured forest soil C stocks and estimated turnover times along an elevation gradient. Geoderma 136: 342-352. Hansen, K., L. Vesterdal, I. K. Schmidt, P. Gundersen, L. Sevel, A. Bastrup-Birk, L. B. Pedersen and J. Bille-Hansen (2009) Litterfall and nutrient return in five tree species in a common garden experiment. Forest Ecology and Management 257: 2133-2144. Horng, F. W., H. M. Yu and F. C. Ma (1995) Typhoons of 1994 doubled the annual litterfall of the Fu-Shan mixed hardwood forest ecosystem in northeastern Taiwan. Bulletin of Taiwan Forest Research Institute 10: 485-491. Horng, C. M. Huang, K.C. Lin, C. T. Du, L. C. Cheng (2003) Organic matter accumulation in forest floors of forest ecosystems in Taiwan. Taiwan Journal Forest Science 18: 101-106. Janssens, I. A., A. Freibauer, P. Ciais, P. Smith, G. J. Nabuurs, G. Folberth, B. Schlamadinger, R. W. A. Hutjes, R. Ceulemans, E. D. Schulzw, R. Valentini and A. J. Dolman (2003) Europe’s terrestrial biosphere absorbs 7 to 12 % of European anthropogenic CO2 emissions. Science 300: 1538-1542. Johnson, D. W., S. E. Lindberg (1992) Atmospheric deposition and forest nutrient cycling. Vol. 91. Springer, New York. Jorgensen, J. R., C. G. Wells and L. J. Metz (1975) The nutrient cycle. Key to continuous forest production. Journal of Forestry 73: 400-403. Killingbeck, K. T. (1996) Nutrients in senesced leaves: key to the search for potential resorption and resorption proficiency. Ecology 77: 1716-1727. Killingbeck, K. T. and W. G. Whitford (2001) Nutrient resorption in shrubs growing by design, and by default in Chihuahuan Desert arroyos. Oecologia 128: 351-359. Kitayama, K. and S. Aiba (2002) Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. Journal of Ecology 90: 37-51. Kozlowski, T. T., P. J. Kramer and S.G. Pallardy (1991) The physiological ecology of woody plants. Academic Press, 657pp. Liao, J. H., H. H. Wang, C. C. Tsai and Z.Y. Hseu (2006) Litter production, decomposition and nutrient return of uplifted coral reef tropical forest. Forest Ecology and Management 235: 174-285. Likens, G. E. and H. Bormann (1995) Biogeochemistry of a Forested Ecosystem. 2nd Edition. Springer, New York. Lin, K. C., S. P. Hamburg, S. L. Tang, Y. J. Hsia and T. C. Lin (2003) Typhoon effects on litterfall in subtropical forest. Canadian Journal of Forest Research 33: 2184-2192. Liski, J., Palosuo, T., Peltoniemi, and M., Sievanen, R. (2005) Carbon and decomposition model Yasso for forest soil. Ecological Modelling 189: 168-182. Liu, C., C. J. Westman, B. Berg, W. Kutsch, G. Z. Wang, R. Man and H. Ilvesniemi (2004) Variation in litterfall-climate relationships between coniferous and broadleaf forests in Eurasia. Global Ecology and Biogeography 13: 105-114. Liu, C., B. Berg, W. Kutsch, C. J. Westman, H. Ilvesniemi, X. Shen, G. Shen (2006) Leaf litter nitrogen concentration as related to climatic factors in Eurasian forests. Global Ecology and Biogeography 15: 438-444. Liu, W., E. D. Fox and Z. Xu (2002) Litterfall and nutrient dynamics in a montane moist evergreen broad-leaved forest in Ailao Mountains, SW China. Plant Ecology 164: 157-170. Miegroet, H. V., P. T. Moore, C. E. Tewksbury and N. S. Nicholas (2007) Carbon sources and sinks in high-elevation spruce–fir forests of the Southeastern US. Forest Ecology and Management 238: 249-260. Nadkarni, N. M. and T. J. Matelson (1992) Biomass and nutrient dynamics of fine litter of terrestrially rooted material in a neotropical montane forest, Costa Rica. Biotropica 24: 113-120. Oleksyn, J., P. B. Reich, R. Zytkowiak, P. Karolewski and M. G. Tjoelker (2003) Nutrient conservation increases with latitude of origin un European Pinus sylvestris populations. Oecologia 136: 220-235. Olson, J. S. (1963) Energy storage and the blance of producers and decomposers in ecological systems. Ecology 44: 322-331. Pandey, R. R., G. Sharma, S. K. Tripathi and A. K. Singh (2007) Litterfall, litter decomposition and nutrient dynamics in a subtropical natural oak forest and managed plantation in northeastern India. Forest Ecology and Management 240: 96-104. Pendry, C. A. and J. Proctor (1996) The cause of altitudinal zonation of rain forests on Bukit Belalong, Brunei. Journal of Ecology 84: 407-418. Reiners, W. A. and G. E. Lang (1987) Change in litterfall along a gradient in altitude. Journal of Ecology 75: 629-638. Röderstein, M., D. Hertel and C. Leuschner (2005) Above- and below-ground litter production in three tropical montane forests in southern Ecuador. Journal of Tropical Ecology 21: 483-492. Ryan, D. F. and F. H. Bormann (1982) Nutrient resorption in northern hardwood forests. Bioscience 32: 29-32. Sayer, E. J. (2006) Using experimental manipulation to assess the roles of leaf litter in functioning of forest ecosystems. Biological Reviews 81: 1-31. Schessl, M., Da Silvab W. L. and G. Gottsberger (2008) Effects of fragmentation on forest structure and litter dynamics in Atlantic rainforest in Pernambuco, Brazil. Flora 203: 215-228. Seniczak, S., J. Dabrowski, A. Klimek and S. Kaczmarek (1998) Effects of air pollution produced by a nitrogen fertilizer factory on the mites (Acari) associated with young Scots pine forests in Poland. Applied Soil Ecology 9: 453-458. Simmons, J. A., I. J. Fernandez, R. D. Briggs and M. T. Delaney (1996) Forest floor carbon pools and fluxes along a regional climate gradient in Maine, USA. Forest Ecology and Management 84: 81-95. Stevens, P. A., M. Hornung and S. Hughes (1989) Solute concentrations and major nutrient cycles in a mature Sitka spruce plantation in Beddgelert Forest North Wales. Forest Ecology and Management 27: 1-20. Vasconcelos, H. L. and W. F. Laurance (2005) Influence of habitat, litter type, and soil invertebrates on leaf-litter decomposition in a fragmented Amazonian landscape. Oecologia 144: 456-462. Vesterdal, L., I. K. Schmidt, I. Callesen, L. O. Nilsson and P. Gundersen (2008) Carbon and nitrogen in forest floor and mineral soil under six common European tree species. Forest Ecology and Management 255: 35-48. Vitousek, P. M. (1982) Nutrient cycling and nutrient use efficiency. American Naturalist 119: 553-572. Vitousek, P. M. (1984) Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65: 285-298. Vogt, K. A., C. C. Grier and D. J. Vogt (1986) Production, turnover, and nutrient dynamics of above- and belowground detritus of world forests. Advance in Ecological Research 15: 303-377. Vucetich, J. A., D. D. Reed, A. Breymeyer, M. Degórski, G. D. Mroz, J. Solon, E. Roo-Zielinska and R. Noble (2000) Carbon pools and ecosystem properties along a latitudinal gradient in northern Scots pine (Pinus sylvestris) forests. Forest Ecology and Management 136: 135-145. Waring, R. H. and W. H. Schlesinger (1985) Forest ecosystems: concepts and management. Academic Press, Orlando, Florida, USA. p. 183. Weerakkody, J. and D. Parkinson (2006) Input, accumulation and turnover of organic matter, nitrogen and phosphorus in surface organic layers of an upper montane rainforest in Sri Lanka. Pedobiologia 50: 377-383. Xu, X., E. Hirata and H. Shibata (2004) Effect of typhoon disturbance on fine litterfall and related nutrient input in a subtropical forest on Okinawa Island, Japan. Basic and Applied Ecology 5: 271-282. Xu, X., Y. Tokashiki, E. Hirata, T. Enoki and K. Nogami (2000) Ecological Studies on Subtropical Evergreen Broad-leaved Forest in Okinawa, Japan: Litter Production and Nutrient Input. Japan Forest Research 5:151-156. Zimmermann, S., S. Braun, M. Conedera and P. Blaser (2002) Macronutrient inputs by litterfall as opposed to atmospheric deposition into two contrasting chestnut forest stands in southern Switzerland. Forest Ecology and Management 161: 289-302.
摘要: 
本研究以台灣中部3處不同海拔天然闊葉林 (北東眼山2,078 m、惠蓀林場1,066 m、蓮華池782 m) 為試驗樣區,自2009年3月至2010年2月,調查比較森林枯落物量、枯落物組成及養分含量、枯枝落葉層量及養分聚積量等,以期了解海拔因子 (溫度及雨量) 對於天然闊葉林之枯落物對養分內循環的影響。本試驗於3處林分內分別放置9個枯落物收集網,每月至試驗地取回枯落物;此外,每3個月進行枯枝落葉層的收集,並於各林分採集土壤樣本作分析。研究結果顯示,枯落物量有隨著海拔增加而降低的趨勢,北東眼山、惠蓀林場及蓮華池之年枯落物輸入量分別為6,583.2、8,238.3及9,180.6kg ha-1 yr-1;同樣地,分解常數有隨海拔降低 (年均溫上升) 而增加 (0.49、0.69及0.87)。在北東眼山 (1031.7 kg ha-1 yr-1) 較蓮華池 (533.0 kg ha-1 yr-1) 具有較多的繁殖體掉落量。蓮華池葉部、枝條枯落物氮及鉀年平均養分濃度則顯著高於北東眼山或惠蓀林場。枯落物碳及養分年輸入量隨海拔降低而增加。養分再轉移作用方面,藉由3處海拔天然闊葉林枯落葉濃度顯示,氮再轉移皆不完全,而磷則為完全再轉移。土壤上層60 cm土壤交換性鉀、鈣和鎂有效養分庫來自年枯落物養分輸入的比例,以惠蓀林場占最多為14.33%、北東眼山為最少 (6.23%)。

The purposes of this study were to evaluate the internal nutrient cycling of litterfall at different elevation (temperature and rainfall) sites. Litterfall was collected monthly by traps and litter was collected trimonthly in three natural hardwood, Mt. Peitungyen (2,078 m), Hui-Sun experiment forest (1,066 m) and Lienhauchi (782 m) in central Taiwan. Monitoring litterfall amounts, nutrient flux, litter amounts and nutrient accumulation of the three sites from March 2009 to February 2010. Annual litterfall mass and decomposition constant increasing (6,583.2 to 9,180.6 kg ha-1yr-1 and 0.49 to 0.87, respectively) with decreased elevation (increasing temperature). The amount of reproduction was higher (1,031.7 kg ha-1 yr-1) in Mt. Peitungyen than in Hui-Sun experiment forest (788.2 kg ha-1 yr-1) and Lienhauchi (533.0 kg ha-1 yr-1). Nitrogen and potassium concentrations of branch and leaf were the highest in Lienhauchi. The nutrient input by litterfall increased with decreasing elevation. Using the minimum nitrogen and phosphorous concentrations in the fall leaf as the retranslocation thresholds, indicating nitrogen retranslocation was incomplete in the three sites, but phosphorous retranslocation was complete. These results suggested that phosphorous was the limiting nutrient in the three sites. Calcium, potassium, magnesium input to the forest via litterfall corresponds to the exchangeable stock in the top 60 cm soil were the highest in Hui-Sun (14.33%) and the lowest in Mt. Peitungyen (6.23%).
URI: http://hdl.handle.net/11455/66132
Appears in Collections:森林學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.