Please use this identifier to cite or link to this item:
標題: 以小波轉換為基礎的高精確度即時心室早期收縮偵測系統
A High-Precision Real-Time Premature Ventricular Contraction (PVC) Detection System Based on Wavelet Transform
作者: 陳學儒
Chen, Shiue Ru
關鍵字: wavelet transform;小波轉換;ECG;PVC;FPGA;心電圖;心室早期收縮;FPGA
出版社: 電機工程學系所
引用: [1] Barbara Aehlertm 原著/王怡心醫師編譯, 輕鬆掌握心電圖, 合計圖書出版, 台北, 2003. [2] E. Braunwald, 台北榮民總醫院內科部醫師李哲全編譯, 圖解心臟疾病學精要, 合記圖書出版社, 2002. [3] 高謙次, 杜賓, 心電圖速成(簡易判別圖法), 南山堂出版, 鴻文堂總經銷, 臺北市, 1991. [4] 楊正榮, A Method of QRS Detection Based on Wavelet Transforms, 國立中山大學碩士論文, 2004. [5] 王元宏, Electrocardiogram Signal for the Detection of Obstructive Sleep Apnoea Via Artificial Neural Networks, 國立中山大學碩士論文, 2004. [6] H.-B. Li, K.-I. Takizawa, B. Zheri, and R. Kohno, “Body area network and its standardization at IEEE 802.15.MBAN,” in Proc. Mobile and Wireless Communications Summit, Jul. 2007, pp. 1-5. [7] J. Penders, B. Gyselinckx, R. Vullers, M. De Nil, V. Nimmala, J. van de molengraft, F. Yazicioglu, T. Torfs, V. Leonov, P. Merken, and C. Van Hoof , “Human++:from technology to emerging health monitoring,” in Proc. International Symposium on Summer School Medical Devices and Biosensors, June 2008, pp.94-98. [8] B. Gyselinckx, C. Van Hoof, J. Ryckaert, R.F. Yazicioglu, P. Fiorini, and V. Leonov, “Huamn++:autonomous wireless sensors for body area networks,” in Proc. Custom Integrated Circuits Conference, Sept. 2005, pp. 13–19. [9] B. Gyselinckx, R.Vullers, C.V. Hoof, J. Ryckaert, R.F. Yazicioglu, P. Fiorini, and V. Leonov, “Humm++:Emerging Technology for Body Area Networks,” in Proc. IFIP International Coference on Very Large Scale Integration, Oct. 2006, pp. 175-180. [10] J. Yuan, K.K. Tan, and T.H. Lee, “Development of an e-Guardian for the Single Elderly or Chronically-Ill Patientss,” in Proc. Iternational Conference on Communications and Mobile Computing, Apr. 2010, pp. 378–382. [11] M. Marzencki, B. Hung, P. Lin, Y. Huang, T. Cho, Y. Chuo, and B. Kaminska,“ Context-aware physiological data acquisition and processing with wireless sensor networks,” in Proc. IEEE International Workshop on Medical Measurements and Applications, May 2010, pp.53-56. [12] Z. Shen, C. Hu, J. Liao, and H. Meng, “An algorithm of premature contraction detection based on wavelet method,” in Proc. IEEE International Conference on Information and Automation, June 2010, pp. 1053–1058. [13] S. Nahar and M. ShahNoor bin Munir, “Automatic detecion of premature ventricular contraction beat using Morphological Transformation and cross-correlation,” in Proc. Iternational Conference on Signal Precessing and Communication Syatems, Sept. 2009, pp. 1-4. [14] P.R. Gomes, F.O. Soares, J.H. Correia, and C.S. Lima, “Cardiac arrhythmia classification using Wavelets and Hidden Markov Models - a comparative approach,” in Proc. Annual International Conference of IEEE Enginering in Medicine and Biology Society, Sept. 2009, pp. 4727-4730. [15] O. Alptekin and A. Akan, “Detection of some heart diseases by the analysis of ECG signals,” in Proc. Signal Precessing and Communications Applications Conference, April. 2010, pp. 716-719. [16] A. Pachauri and M. Bhuyan, “Wavelet and energy based approach for PVC detection,” in Proc. Iternational Conference on Emergin Trends in Electronic and Photonic Devices & Systems, Dec. 2009, pp. 258-261. [17] X. Zheng, Z. Li, L. Shen, and Z. Ji, “Detection of QRS complexes based on Biorthogonal Spline Wavelet, ” in Proc. International Symposium on Information Science and Engineering, Dec. 2008, pp. 502-506. [18] Y. Yang, X. Huang, and X. Yu, “Real-time ECG monitoring system based on FPGA,” in Proc. Annual Conference of the IEEE Industrial Electronics Society, Nov. 2007, pp. 2136-2140. [19] R. Trobec, M. Depolli, and V. Avbelj, “Wireless Network of Bipolar Body Electrodes,” in Proc. Inernational Conference on wireless On-demand Network Systems and Services, Feb. 2010, pp. 145-150. [20] [21] [22] [23] 林羣晨,A cardiac health expert system based on electrocardiogram, 慈濟大學碩士論文,2007。
在台灣,心臟疾病長期以來都位於十大死因排行中,近幾年更高居第二,因此診斷心臟疾病及如何預防就顯得格外重要。心電圖(ECG)是目前判斷心臟活動最可靠的方法,藉由紀錄心臟活動的相關電氣訊號,可在心電圖紙上畫出心電圖,再由醫師判斷心臟是否有異常,進而評估並加以治療。心臟疾病很多是瞬間的或發生時間極短的,這會造成當感到心臟不舒服時,馬上趕到醫院就醫,做了心電圖檢查,卻檢查不出是什麼原因,而讓醫生無法評估與治療,所以一種高精確度即時偵測系統是迫切需要的,以避免上述情形。本論文的重點是提出一個高精確度即時心室早期收縮(Premature Ventricular Contraction ,PVC)偵測系統。採用小波轉換偵測R波波峰,並提出一個全新的結合了兩種方法之PVC偵測演算法來加以偵測、判斷有無PVC的發生,第一種為波谷之和法,第二種為R_peak與最小值之和法,若發生病態則發出警告訊息給使用者。模擬與驗證採用MIT-BIH Arrhythmia Database (mitdb),最後使用FPGA實現我們的系統。

In Taiwan, heart disease has been in the top ten causes of death for a long time, and even at the second place in recent years, Thus the diagnosis of heart disease and how to prevent it is particularly important.Currently, Electrocardiogram (ECG) is the most reliable way to determine heart activity by record relevant electrical signal, which can be drawn on electrocardiogram paper to produce ECG. Doctor can diagnose whether there is abnormal, and further assess or treat.A lot of heart diseases occur in a moment or a very short time, and it will cause the patients to feel uncomfortable and then to go to the hospital to do ECG examination, but can not check out the reason so that the doctors can not assess and treat. Therefore, a high-precision real-time detection system is urgently needed to prevent the above situation.The focus of this thesis is to propose a high-precision real-time Premature Ventricular Contraction (PVC) detection system. We will use wavelet transform to detect R wave peaks and propose a new PVC detection algorithms that combines two methods to detect and determine whether the occurrence of PVC. The first method is the sum of trough and the second one is the sum of R_peak and minimum. If the morbid state happens, a warning message will be sent to the user.We simulate and verify the proposed system by using MIT-BIH Arrhythmia Database (mitdb). Finally, our system is implemented by FPGA.
其他識別: U0005-1708201100065800
Appears in Collections:電機工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.