Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorWen-Jau Leeen_US
dc.contributor.authorHu, Ming-Shanen_US
dc.identifier.citation1. 尤昭云 (2002) 液化木質材料製造聚胺基甲酸酯樹脂及其醇解回收再利用。國立中興大學森林學系碩士學位論文。pp.78。 2. 高毓斌 (2011) 液化柳杉為基質PU樹脂/奈米矽氧有機-無機混成材料之製備及性質。國立中興大學森林學系碩士學位論文。pp.83。 3. 蔡宗志 (2011) 雙胺鏈延長劑長度對陰離子水性PU的影響。國立中央大學化學工程與材料工程學系碩士論文。pp. 9-10。 4. Bullermann, J., S. Friebel, T. Salthammer and R. Spohnholz (2013) Novel polyurethane dispersions based on renewable raw materials-stability studies by variations of DMPA content and degree of neutralization. Prog. Org. Coat. 76:609-615. 5. Cao, X., L. Zhang, G. Yang, J. Huang and Y. Wang (2003) Structure-properties relationship of starch/waterborne polyurethane composites. J. Appl. Polym. Sci. 90:3325-3332. 6. Cazacu, G. and V. I. Popa (2003) Lignin-based blends. In “ Handbook of Polymer Blends and Composites” Eds. Vasile, C. and Kulshreshtha, A. K., Rapra Technology Ltd., Shawbury, UK. pp. 565-614. 7. Chattopadhyay1, D. K. and K.V.S.N. Raju (2007) Structural engineering of polyurethane coatings for high performance applications. Prog. Polym. Sci. 32:352-418. 8. Chen Y. and J. O. Iroh (1999) Synthesis and characterization of polyimide/silica hybrid composites. Chem. Mat. 11:1218-1222. 9. Chen, J. J., C. F. Zhu, H. T. Deng, Z. N. Qin and Y. Q. Bai (2009) Preparation and characterization of the waterborne polyurethane modified with nanosilica. J. Polym. Res. 16:375-380. 10. Ciobanu, C., M. Ungureanu, L, Ighat, D. Ungureanu and V. I. Popa (2004) Properties of lignin-polyurethane films prepared by casting method. Ind. Crop. Prod. 20:231-241. 11. Delpech, M. C. and F. M. B. Coutinho (2000) Waterborne anionic polyurethanes and poly(urethane-urea)s:influence of the chain extender on mechanical and adhesive properties. Polym. Test. 19:939-952. 12. Delpech, M. C. and G. S. Miranda (2012) Waterborne polyurethanes: influence of chain extender in FTIR spectra profiles. Cent. Eur. J. Eng. 5(2):231-238. 13. Evtuguin, D.V., J. P. Andreolety, and A. Gandini, (1998) Polyurethanes based on oxygen–organosolv lignin. Eur. Polym. J. 34(8):1163–1169. 14. Frost, R. L. and E. Mendelovici (2006) Modification of fibrous silicates surfaces with organic derivatives: An infrared spectroscopic study. J. Colloid. Interf. Sci. 294:47-52. 15. Gao, X., Y. Zhu, X. Zhao, Z. Wang, D. An, Y. Ma, S. Guan, Y. Du and B. Zhou (2011) Synthesis and characterization of polyurethane/SiO2 nanocomposites. Appl. Surf. Sci. 257:4719-4724. 16. Guo, T., X. Chen, M. Song and B. Zhang (2006) Preparation and properties of core [poly(styrene-n-butyl acrylate)]–shell [poly(styrene–methyl methacrylate–vinyl triethoxide silane)] structured latex particles with self -crosslinking characteristics. J. Appl. Polym. Sci. 100:1824-1830. 17. Hirose, S., S. Yano, T. Hatakeyama and H. Hatakeyama (1989) Heat-resistant polyurethanes from solvolysis lignin. In “Lignin Properties and Materials” Eds. Glasser, W. G. and Sarkanen, S., American Chemical Society, Washington, DC. pp. 383-389. 18. Ibrahima, M. N. M., N. Zakariaa, C. S. Sipautb, O. Sulaimanc and R. Hashimc (2011) Chemical and thermal properties of lignins from oil palm biomass as substitute for phenol in a phenol formaldehyde resin production. Carbohydr. Polym. 86:112-119. 19. Jang, J. Y., Y. K. Jhon, I. W. Cheon and J. H. Kim (2002) Effect of process variables on molecular weight and mechanical properties of water-based polyurethane dispersion. Colloid. Surface. A. 196:135-143. 20. Jang W. S. and B. K. Kim (2005) Preparations and properties of waterborne polyurethane/nanosilica composites. Polym. Bull. 54:123-128. 21. Jena, K. K. and K. V. S. N. Raju (2008) Synthesis and characterization of hyperbranched polyurethane hybrids using tetraethoxysilane (TEOS) as cross-linker. Ind. Eng. Chem. Res. 47:9214-9224. 22. Jeon, H. T., M. K. Jang, B. K. Kim and K. H. Kim (2007) Synthesis and characterizations of waterborne polyurethane-silica hybrids using sol-gel process. Colloid. Surface. A. 302:559-567. 23. Jin, Y., X. Ruan, X. Cheng and Q. Lu (2011) Liquefaction of lignin by polyethyleneglycol and glycerol. Bioresource Technol. 102:3581-3583. 24. Kurimoto, Y., M. Takeda, A. Koizumi, S. Yamauchi, S. Doi and Y. Tamura (2000) Mechanical properties of polyurethane films prepared from liquefied wood with polymeric MDI. Bioresour. Technol. 74:151-157. 25. Kurimoto, Y., D. Shuichi and Y. Tamura (2005) Species effects on wood-liquefaction in polyhydric alcohols. Holzforschung 53:617-622. 26. Kwak, Y. S., S. W. Park and H. D. Kim (2003) Preparation and properties of waterborne polyurethane-urea anionomers influences of the type of neutralizing agent and chain extender. Colloid. Polym. Sci. 281:957-963. 27. Lai, S. M., C. K. Wang and H. F. Shen (2005) Properties and preparation of thermoplastic polyurethane/silica hybrid using sol–gel process. J. Appl. Polym. Sci. 97:1316-1325. 28. Lai, X., X. Li, L. Wang and Y. Shen (2010) Synthesis and characterizations of waterborne polyurethane modified with 3-aminopropyltriethoxysilane. Polym. Bull. 65:45-57. 29. Lai, X., Y. Shen, L. Wang, and Z. Li (2011) Preparation and performance of waterborne polyurethane/nanosilica hybrid materials. Polym-Plast. Technol. 50:740-747. 30. Lee, W. J. and M. S. Lin (2008) Preparation and application of polyurethane adhesives made from polyhydric alcohol liquefied Taiwan acacia and China fir. J. Appl. Polym. Sci. 109:23-31. 31. LeVan, S.L. (1989) Thermal degradation. In “Concise Encyclopedia of Wood & Wood-Based Materials” Ed. Schnievind, A.P. Pergamon Press, Elmsford, NY, USA, pp. 271-273. 32. Lu, Y., L. Tighzert, P. Dole and D. Erre (2005) Preparation and properties of starch thermoplastics modified with waterborne polyurethane from renewable resources. Polymer 46:9863-9870. 33. Mansouri, N. E. E. and J. Salvado (2006) Structural characterization of technical lignins for the production of adhesives: application to lignosulfonate, kraft, soda-anthraquinone, organosolv and ethanol process lignins. Ind. Crop. Prod. 24:8-16. 34. Mattia J. and P. Painter (2007) A comparison of hydrogen bonding and order in a polyurethane and poly(urethane-urea) and their blends with poly(ethylene glycol). Macromolecules 40:1546-1554. 35. Nikje, M. M. A. and Z. M. Tehrahi (2010) Synthesis and characterization of waterborne polyurethane-chitosan nanocomposites. Polym-Plast. Technol. 49:812-817. 36. Noble, K. L. (1997) Waterborne polyurethanes. Prog. Org. Coat. 32:131-136. 37. Orgiles-Calpena, E., F. Aran-Ais, A. M. Torro-Palau and C. Orgiles-Barcelo (2010) Effect of amount of carbon nanotubes in polyurethane dispersions. Macromol. Symp. 321-322;135-139. 38. Peng, Y., G. Zhao, K. Wang, R. Tong, F. Sun, F. Mei, and S. Lu (2011) Synthesis and properties of aliphatic waterborne polyurethanes with high ionic concentration. Chem. Lett. 40:736-738. 39. Rahman, M. M. and H. Kim (2006) Synthesis and characterization of waterborne polyurethane adhesives containing different amount of ionic group (I). J. Appl. Polym. Sci. 102:5684-5691. 40. Rahman, M. M., A. Hasneen, N. J. Jo and H. I. Kim (2011) Properties of waterborne polyurethane adhesives with aliphatic and aromatic diisocyanate. J. Adhes. Sci. Technol. 25:2051-2062. 41. Rahman, M. M., A. Hasneen, I. Chung, H. Kim, W. K. Lee and J. H. Chun (2013) Synthesis and properties of polyurethane coatings: the effect of different types of soft segments and their ratios. Compos. Interface. 20:15-26. 42. Sardon, H., L. Irusta, M. J. Fernandez-Berridi, M. Lansalot and E. Bourgeat-Lami (2010) Synthesis of room temperature self-curable waterborne hybrid polyurethanes functionalized with (3-aminopropyl)triethoxysilane (APTES). Polymer 51:5051-5057. 43. Schottner, G. (2001) Hybrid sol-gel derived polymers: applications of multifunctional materials. Chem. Mat. 13:3422-3435. 44. Šebenik, U. and M. Krajnc (2007) Influence of the soft segment length and content on the synthesis and properties of isocyanate-terminated urethane prepolymers. Int. J. Adhes. Adhes. 27:527-535. 45. Wang, K., Y. Peng, R. Tong, Y. Wang and Z. Wu (2010) The effect of isocyanate index on the properties of aliphatic waterborne polyurethaneureas. J. Appl. Polym. Sci. 118:920-927. 46. Xia, Y. and R. C. Larock (2011) Preparation and properties of aqueous castor oil-based polyurethane–silica nanocomposite dispersions through a sol-gel Process. Macromol. Rapid. Comm. 32:1331-1337. 47. Yano, S., K. Iwata and K. Kurita (1998) Physical properties and structure of organic-inorganic hybrid materials produced by sol-gel process. Mater. Sci. Eng. C 6:75-90. 48. Yeh, J. M., C. T. Yao, C. F. Hsieh, H. C. Yang and C. P. Wu (2008) Preparation and properties of amino-terminated anionic waterborne-polyurethane–silica hybrid materials through a sol–gel process in the absence of an external catalyst. Eur. Polym. J. 44:2777-2783. 49. Yen, M. S., P. Y. Chen and H. C. Tsai (2003) Synthesis, properties, and dyeing application of nonionic waterborne polyurethanes with different chain length of ethyldiamines as the chain extender. J. Appl. Polym. Sci. 90:2824-2833. 50. Zhang, L. and J. Huang (2001) Effects of nitrolignin on mechanical properties of polyurethane-nitrolignin films. J. Appl. Polym. Sci. 80:1213-1219.en_US
dc.description.abstractIn this study, waterborne polyurethane (PU) resins were prepared by reacting isophorone diisocyanate (IPDI) with polyol that polyhydric alcohol liquefied lignin (LL) was being substituted for partial polytetramethylene ether glycol (PTMG). In addition, the performance of waterborne PU resins those prepared with ethylenediamine (EDA) and 1,4-butanediol (1,4-BD) as chain extender was compared. Furthermore, the modified waterborne PU resin that containing alkoxysilane groups was prepared by adding 3-aminopropyltriethoxysilane (APTES) during resins synthesis. The performance of organic-inorganic hybrids prepared by mixing waterborne PU resin (unmodified and alkoxysilane-modified) with tetraethoxysilane (TEOS) was also investigated. The result shows that LL can be used in preparing waterborne PU resins. The viscosity and particle size of waterborne PU resins increased with increasing the content of LL. The tensile modulus and thermal stability of PU films can be enhanced by adding LL, but the water- and solvent-resistance, tensile strength and elongation at break are decreased. Waterborne PU resins containing LL have good bonding performance for wood and PVC. In addition, they have well bending resistance and high hardness for coatings. However, the abrasion resistance and adhesion are decreased. Comparison between two chain extenders, films with EDA as chain extender have better water- and solvent-resistance, tensile strength and thermal resistance. On the other hand, films with 1,4-BD have higher tensile elongation. The water resistance, solvent resistance, tensile strength, toughness and room temperature storage modulus of PU/silica hybrid films those made by adding TEOS into waterborne PU resins are increased for which containing 1% and 3% of SiO2. However, the water and solvent resistance decreased when too much of SiO2 existed. Modification waterborne PU resins with APTES is noneffective for improving the solvent resistance of PU silica hybrids films, but can enhance the mechanical properties and thermal stability. The effect of silica structure is mainly restricted the thermal action of soft segment in PU resins, but this effect is unobvious for hard segment.en_US
dc.description.abstract本研究利用異佛爾酮二異氰酸酯(Isophorone diisocyanate; IPDI)與經多元醇液化木質素(Liquefied lignin; LL)部分取代之聚四亞甲基醚二醇(Polytetramethylene ether glycol; PTMG)反應製備水性PU樹脂,並比較乙二胺(Ethylenediamine; EDA)和1,4-丁二醇(1,4-Butanediol; 1,4-BD)兩種鏈延長劑所製備水性PU樹脂之性質,進一步則於合成時添加3-(三乙氧矽基)丙胺(3-Aminopropyltriethoxysilane; APTES)製備含矽氧烷基之改質水性PU樹脂,並比較未改質及矽氧烷改質水性PU樹脂混合四乙基矽氧烷(Tetraethoxysilane; TEOS)所製作有機-無機混成薄膜之性能。試驗結果顯示,LL可應用於水性PU樹脂之製備,隨LL取代量增加,水性PU樹脂液之黏度及粒徑增大,添加LL可提高PU樹脂薄膜之拉伸模數及熱安定性,然耐水性、耐溶劑、拉伸強度及拉伸破壞伸長率則降低;含LL之水性PU樹脂對木材及PVC塑膠具備良好膠合性,而塗裝性方面各塗膜抗彎曲性良好,添加LL者硬度提高,惟耐磨耗性及附著性降低。兩種鏈延長劑比較,以EDA為鏈延長劑者,其樹脂薄膜之耐水性、耐溶劑性、拉伸強度及熱抵抗性較佳,以1,4-BD為鏈延長劑者則具備較大之拉伸伸長率。水性PU樹脂添加TEOS形成PU樹脂/矽氧混成薄膜時,在SiO2 含量1%及3%時可提高PU樹脂薄膜之耐水性、耐溶劑性、拉伸強度、韌性及室溫時之儲存模數,但過多的SiO2則降低其耐水性及耐溶劑性。經APTES改質之水性PU樹脂對其PU樹脂/矽氧混成薄膜之耐溶劑性無改善效果,但可提高樹脂薄膜之機械性質及熱安定性,矽氧結構主要限制PU樹脂中軟鏈段之熱活動性,對硬鏈段則無明顯影響。zh_TW
dc.description.tableofcontents摘要 i Summary ii 目錄 iv 表目次 vii 圖目次 xi 第一章 前言 1 第二章 文獻回顧 3 一、PU樹脂簡介 3 二、水性PU樹脂之製備原理及性質 5 三、水性PU樹脂/矽氧有機-無機混成材料 11 四、生物質材料於PU樹脂製備之應用 15 五、木質纖維之液化處理及液化產物在合成樹脂之製備及應用 16 第三章 含液化木質素水性PU樹脂之製備及其性質 17 一、材料與方法 17 (一) 試驗材料 17 (二) 試驗方法 18 二、結果與討論 26 (一) 液化木質素之性質 26 (二) 水性PU樹脂之性質 28 (三) PU樹脂薄膜之性質 34 (四) PU樹脂之膠合及塗裝性質 44 第四章 不同鏈延長劑之水性PU樹脂/矽氧混成材料 46 一、材料與方法 46 (一) 試驗材料 46 (二) 試驗方法 46 二、結果與討論 47 (一) 不同鏈延長劑水性PU樹脂之基本性質 47 (二) 不同鏈延長劑PU樹脂薄膜之FT-IR分析 50 (三) 不同鏈延長劑PU樹脂薄膜之耐水性及耐溶劑性 53 (四) 不同鏈延長劑PU樹脂薄膜之機械性質 53 (五) 不同鏈延長劑PU樹脂薄膜之TGA熱性質 55 (六) 不同鏈延長劑PU樹脂薄膜之DMA熱分析 57 第五章 TEOS/水性PU樹脂製備PU/矽氧混成材料之性質 60 一、材料與方法 60 (一) 試驗材料 60 (二) 試驗方法 60 二、結果與討論 61 (一) PU樹脂/矽氧混成薄膜之顯微結構 61 (二) PU樹脂/矽氧混成薄膜之FT-IR分析 63 (三) PU樹脂/矽氧混成薄膜之耐水性及耐溶劑性 66 (四) PU樹脂/矽氧混成薄膜之機械性質 68 (五) PU樹脂/矽氧混成薄膜之TGA熱性質 71 (六) PU樹脂/矽氧混成薄膜之DMA熱分析 75 第六章 APTES改質水性PU樹脂/矽氧混成材料之製備與性質 80 一、材料與方法 80 (一) 試驗材料 80 (二) 試驗方法 80 二、結果與討論 81 (一) 矽氧烷改質水性PU樹脂之基本性質 81 (二) 矽氧烷改質水性 PU樹脂/矽氧混成薄膜之顯微結構 82 (三) 矽氧烷改質水性PU樹脂/矽氧混成薄膜之FT-IR分析 84 (四) 矽氧烷改質水性PU樹脂/矽氧混成薄膜之耐水性及耐溶劑性 88 (五) 矽氧烷改質水性PU樹脂/矽氧混成薄膜之機械性質 90 (六) 矽氧烷改質水性PU樹脂/矽氧混成薄膜之TGA熱性質 93 (七) 矽氧烷改質水性PU樹脂/矽氧混成薄膜之DMA熱分析 97 第七章 結論 101 參考文獻 103zh_TW
dc.subjectWaterborne polyurethaneen_US
dc.subjectLiquefied ligninen_US
dc.subjectChain extenderen_US
dc.subjectSol-gel processen_US
dc.subjectOrganic-inorganic hybrids.en_US
dc.titleApplication of Polyhydric Alcohol Liquefied Lignin in Preparing Waterborne Polyurethane Resins and Organic-Inorganic Hybridsen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:森林學系
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.