Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/66197
標題: 孔隙對海岸林更新樹種之影響
Effects of Gaps on Coastal Tree Species for Reforestation
作者: 洪淑婷
Hong, Shu-Ting
關鍵字: 海檬果;Cerbera manghas;欖仁;瓊崖海棠;孔隙;光度;淨光合速率;葉綠素螢光;Terminalia catappa;Calophyllum inophyllum;gap;light intensity;net photosynthetic rate;chlorophyll fluorescence
出版社: 森林學系所
引用: 第六章 參考文獻 王相華 (1995) 不同光度對四種季風雨林樹種幼苗生長及形態之影響。林業試驗所研究報告季刊 10(4):405-418。 王相華、郭耀綸、潘順勇 (1997) 墾丁高位珊瑚礁森林樹冠疏開對二十種樹木種子發芽的影響。台灣林業科學 12(3):299-307。 王智弘 (1997) 光度對春不老與潺槁木薑子苗木生長及生理反應之影響。國立中興大學森林學系碩士論文。8頁。 王志斌 (2006) 四湖海岸木麻黃林下光度對水黃皮、海檬果及欖仁苗木生長之影響。國立嘉義大學林業暨自然資源研究所碩士論文。40-48頁。 王志斌、許原瑞、陳財輝 (2008) 營造四湖海岸生態園區。環境綠化 48:56-61。 方榮坤、邱陸陽、廖天賜、林鴻忠 (1990) 林木耐陰性之研究(I)不同光度對於香杉、臺灣杉苗木生長之影響。國立中興大學農學院實驗林研究報告 12(1):89-106。 朱珮綺、許博行 (2005) 次生林下小苗對光能的利用與耐陰性之探討。林業研究季刊 27(2):23-34。 呂福原、歐辰雄、鄧書麟、林德勳 (2007) 台灣濱海鹽溼地造林與綠美化植物圖說。行政院農業委員會林務局。36-76頁。 李威震 (2006) 臺灣東北部海岸保安林木麻黃林分健康監測之研究。國立宜蘭大學自然資源學系碩士論文。54-56頁。 李威震、王兆桓 (2007) 東北部海岸保安林木麻黃林分調查分析。台灣林業 33(5):15-24。 李安翔 (2010) 三種闊葉樹種苗木在不同光環境之形態及生理調適。國立中興大學森林學系碩士論文。16頁。 何坤益、張怡萱、鄧書麟、莊安靖 (1996) 四湖地區木麻黃防風林空隙地的更新栽植。林業研究專訊 3(5):13-15。 何坤益 (2006) 台灣海岸林造林之撫育管理。台灣林業 32(1):40-43。 何坤益、陳威廷、許原瑞、鄧書麟、王志斌 (2010) 四湖海岸樹木園林木適應調查。環境綠化 52:49-60。 沈介文、劉興旺、郭幸榮 (2004) 五種台灣原生闊葉樹種苗木於不同光度下之葉部形態與解剖性狀之改變。國立臺灣大學農學院實驗林研究報告 18(2):85-99。 卓志隆、林世宗 (2009) 宜蘭縣蘇澳地區海岸防風林變遷與復育之研究。林務局98年度研究計畫。52頁。 林安秋 (1984) 作物之光合作用。台灣商務印書館。18頁。 林添富 (1992) 光度對台灣櫸與毛柿苗木生長之影響。國立中興大學森林學系碩士論文。3-18頁。 林讚標 (1996) 林木種子採集、處理、儲藏、休眠與發芽。林業叢刊第66號。55頁。 林登秋、江智民 (2002) 半球面影像在森林生態研究的應用。台灣林業科學 17(3):387-400。 林文智、郭耀綸 (2007) 山楜椒、光葉柃木及椎果櫟樹苗的生長與生理對不同光環境的反應。作物、環境與生物資訊 4:297-306。 邱祈榮、趙明君、林朝欽、陳財輝 (2007) 林分孔隙分布圖之繪製及其應用探討:以花蓮德燕海岸林為例。台灣林業科學 22(2):159-172。 范貴珠、許博行、張峻德 (2002) 土壤鹽度對欖李苗木葉綠素螢光反應及呼吸作用之影響。台灣林業科學 17(3):323-35。 姚曉文 (2010) 冠層孔隙下之微環境變化及闊葉樹苗木之反應。國立台灣大學森林環境暨資源學系碩士論文。18-19頁。 徐邦達 (2002) 葉綠素螢光和PAM螢光儀:原理及測量。2002年光合作用研討會。7-8頁。 翁仁憲、廖天賜、黃盟元、徐鎮暉、鍾基啓、林宗平 (2003) 不同海拔松樹之葉綠素螢光及光合作用之季節變化。2003年光合作用研討會。2頁。 翁仁憲 (2010) 桃實百日青之光保護與光抑制。2010年光合作用研討會。3頁。 翁世豪、沈介文、游啓皓、林謙佑、鍾年鈞、陳柏因、郭幸榮 (2011) 疏伐對柳杉林分生長結構及冠層下植物之影響。中華林學季刊 44(2):157-182。 許明晃 (2003) 甘藷葉片色素含量與反射光譜關係之研究。國立台灣大學農藝學系博士論文。14-19頁。 許博行 (2006) 海岸木麻黃林分易衰老原因之探討。台灣林業 32(2):40-44。 許立勳 (2006) 不同光度環境對三種海岸林樹種苗木生理之反應。國立中興大學森林學系碩士論文。28頁。 陳財輝、呂錦明、沈慈安 (1990) 苗栗海岸地區不同齡級木麻黃防風林生長調查。林業試驗所研究報告季刊 5(1):17-24。 陳財輝 (2001) 桃園縣飛砂防止保安林應加強的措施。現代育林 16(2):31-35。 陳財輝、黃隆明 (2006) 花蓮海岸防風保安林功能及營造對策。台灣林業 32(1):17-25。 陳財輝 (2007a) 桃園海岸飛砂之移動及其安定對策探討。第二屆環境保護林經營管理研討會論文集。4-18頁。 陳財輝 (2007b) 海岸木麻黃林演替及人工更新技術之研究。林業試驗所96年度自辦科技計畫。7-9頁。 陳財輝 (2008) 人工海岸保安林復舊。林業研究專訊 15(1):18-21頁。 陳財輝、韓明琦 (2010) 台灣的海岸林。第五屆環境保護林經營管理研討會論文集。3-16頁。 張乃航 (1996) 光照效應對台灣赤楊、山黃麻及構樹種子發芽的影響。台灣林業科學 11(2):195-199。 張安邦、廖天賜、方榮坤、翁仁憲、李丁松 (2000) 光度對大葉楠及香楠形質生長的影響。林業研究季刊 22(1):14-22。 張照群 (2007) 溪頭地區柳杉人工林不同冠層結構開闊度之微環境變化、種子發芽及苗木之生長表現。國立臺灣大學森林環境暨資源學系碩士論文。9-78頁。 張桓顥 (2007) 紅檜及台灣扁柏苗木在不同光度及養分及下馴化之生長、光合作用及葉綠素螢光表現。國立台灣大學森林環境暨資源學系碩士論文。13-14頁。 郭幸榮、黃進輝 (1999) 烏心石苗木生長於溫室內不同光度下之生理特性。中華林學季刊 32(1):25-38。 郭幸榮 (2003) 植物在逆境下的生存策略。科學發展 366:32-37。 郭耀綸、楊月玲、吳祥鳴 (1999) 墾丁熱帶森林六種樹苗生長性狀及光合作用對光量的可塑性。台灣林業科學 14(3):255-73。 郭耀綸、楊月玲、鄭鈞謄、傅瑩娟 (2003) 三種台灣特有種樹苗在不同光環境下的淨光合作用季節變化。台灣林業科學 18(2):107-16。 郭耀綸、陳佐治、鄭鈞謄 (2004a) 牛樟扦插苗的生長及光合作用對光量的反應。台灣林業科學 19(3):215-24。 郭耀綸、范開翔、黃慈薇、李彥屏、吳惠綸、蔡瑞芬 (2004b) 台灣三十種闊葉樹陽葉氣體交換潛力之研究。台灣林業科學 19(4):375-386。 郭耀綸、賴幸榆 (2008) 南仁山森林不同耐陰性樹苗光合作用性狀及其對光量的可塑性。國家公園學報 18(1):11-21。 郭耀綸 (2009) 光資源對林木生長及光合作用性狀的影響。種苗與造林技術之研究與挑戰研討會。99-116頁 郭耀綸、陳海琳 (2010) 台灣南部八十種闊葉樹種光合作用性狀及其應用。2010年光合作用研討會。5-14頁。 郭耀綸、陳海琳、葉慶龍 (2011) 臺灣原生闊葉樹種光合潛力與其天然更新苗光環境的關係。2011年森林資源保存與利用研討會論文集。91-100頁。 黃秀鳳、黃文達、許明晃、楊志維、趙璧玉、張新軒、蔡養正、楊棋明 (2004) 三種不同顏色甘藷葉片葉綠素合成能力之分析。作物、環境與生物資訊 1:47-54。 黃彬城、季靜、王罡、鄭陽霞 (2006) 植物類胡蘿蔔素的研究進展。天津農業科學 12(2):13-17。 黃淑清 (2008) 樟樹葉綠素含量與光譜訊號之研究。國立嘉義大學林業暨自然資源研究所碩士論文。6頁。 黃佩瑜 (2010) 三種海岸樹種苗木對不同光環境之反應。國立中興大學森林學系碩士論文。32頁。 游智偉、劉興旺、楊正釧、郭幸榮 (2009) 生長在不同光度及施肥量下闊葉樹苗木之光合作用及葉綠素螢光表現。中華林學季刊 42(2):267-282。 彭世賢、曾繁絢、郭耀綸 (2007) 南仁山迎風坡森林小苗短期更新動態及其受颱風的影響。國家公園學報 17(2):15-25。 葉韋欣 (2007) 六種殼斗科苗木之光度適應性研究。國立宜蘭大學自然資源學系碩士論文。109頁。 楊正釧 (2011) 台灣原生海岸樹種種子的發芽與儲藏。第六屆環境保護林經營管理研討會論文集。49-56頁。 廖玉琬、徐善德 (1999) 植物生理學。啟英文化。145-435頁。 廖天賜、張安邦、翁仁憲 (2002) 遮蔭對大葉楠與香楠苗木光合作用及生理的影響。林業研究季刊 24(1):1-10。 廖天賜 (2011) 木麻黃的天然更新機制與可行性。林業研究專訊 18(2):21-24。 劉棠瑞、蘇鴻傑 (1983) 森林植物生態學。台灣商務印書館。119 頁。 劉業經、呂福原、歐辰雄 (1994) 台灣樹木誌。國立中興大學農學院叢書。461-616頁。 劉賢祥 (1996) 植物生理學。徐氏基金會出版。145-150頁。 劉丞桓、蔡昀岱、郁元植、劉育菁、陳靖佳、陳文輝、王恆隆 (2009) 遮蔭改變蝴蝶蘭苗的光合效率與碳源庫代謝及對抽梗的影響。2009年光合作用研討會。3頁。 劉永正、林世宗、邱祈榮、陳財輝 (2010) 宜蘭南澳海岸防風林分狀態變遷之解析。第五屆環境保護林經營管理研討會論文集。91-106頁。 劉福成、藍其安、許文昌 (2011) 南投林區管理處海岸林之營造。環境綠化 54:42-47。 蔡景株、許原瑞、吳進益、張原彰、黃世欣、鄧書麟、張怡萱、劉癸君 (2008) 加工出口區中港園區海岸綠美化植栽圖鑑。經濟部加工出口區管理處中港分處。56-86頁。 蔡忠勳、何坤益、鄧書麟、張怡萱 (1998) 水黃皮、欖仁、大葉山欖及烏桕之種子處理及育苗。林業研究專訊 5(1):9-10。 鄭石先 (2006) 台灣海岸砂地造林實務經驗談。台灣林業 32(1):36-39。 鄧書麟、何坤益、陳財輝、王志斌、高銘發 (2005) 台灣西海岸防風林造林策略與樹種之選介。台灣林業 31(1):62-67。 鄧書麟、沈勇強、何坤益、呂福原、張怡萱、李玟樑 (2007) 四湖海岸木麻黃林下海檬果天然更新特性之研究。中華林學季刊 40(4):519-534。 賴聰明、周以哲 (2009) 新竹林區管理處海岸林之營造。環境綠化 51:33-50。 簡慶德 (2001) 林木種子的休眠和解除休眠的方法。林業研究專訊 8(2):7-10。 Albanesi, E., O. I. Gugliotta, I. Mercurio and R. Mercurio (2005) Effects of gap size and within-gap position on seedlings establishment in silver fir stands. Forest 2(4): 358-366. Arnon, D. (1949) Copper enzyme in isolated chloroplasts polyphenoloxidased in Beta vulgaris. Plant Physiology 24: 1-15. Ashton, P. M. S. and G. P. Berlyn (1992) Leaf adaptations of some Shorea species to sun and shade. New Phytologist 121: 587-596. Augspurger, C. K. (1984) Light requirements of neotropical tree seedlings: a comparative study of growth and survival. Journal of Ecology 72(3): 777-795. Balaguer, L., E. Martinez-Ferri, F. Valladares, M. E. Perez-Corona, F. J. Baquedano, F. J. Castillo and E. Manrique (2001) Population divergence in the plasticity of the response of Quercus coccifera to the light environment. Functional Ecology 15: 124-135. Bergmeyer, H. U. (1983) Methods for protein determination in methods of enzymatic analysis. 3rd. edition vol. II-Samples reagents assessment of results. Verlag Chemie Weinheim. p. 84-94. Cai, Z.-Q., T. Rijkers and F. Bongers (2005) Photosynthetic acclimation to light changes in tropical monsoon forest woody species differing in adult stature. Tree Physiology 25: 1023-1031. Close, D. C., Beadle, C. L. and M. J. Hovenden (2001) Cold-induced photoinhibition and foliar pigment dynamics of Eucalyptus nitens seedlings during establishment. Australian Journal of Plant Physiology 28: 113-1141. Coates, K. D. (2002) Tree recruitment in gaps of various size, clearcuts and undisturbed mixed forest of interior British Columbia, Canada. Forest Ecology and Management 155: 387-398. Demmig-Adams, B., W. W. Adams Ⅲ, D. H. Barker, B. A. Logan, D. R. Bowling and A. S. Verhoeven (1996) Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiologia Plantarum 98: 253-264. Frazer, G. W., C. W. Canham and K. P. Lertzman (1999) Gap light analyzer (GLA), vers. 2.0: Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation. Burnaby, British Columbia: Simon Fraser University and Millbrook, New York: Institute of Ecosystem Studies. p. 21. Friedrech, J. W. and R. C. Haffaker (1980) Photosynthesis, leaf resistances, and ribulose-1,5-bisphosphate carboxylase degradation in senescing barley Leaves. Plant Physiology 65: 1103-1107. Gardiner, E. S., M. LoF, J. J. ƠBrien, J. A. Stanturf and P. Madsen (2009) Photosynthetic characteristics of Fagus sylvatica and Quercus robur established for stand conversion from Picea abies. Forest Ecology and Management 258: 868-878. Givnish, T. J. (1988) Adaptation to sun and shade: a whole-plant perspective. Australian Journal of Plant Physiology 15: 63-92. Gray, A. N. and T. A. Spies (1996) Gap size, within-gap position and canopy structure effects on conifer seedling establishment. Journal of Ecology 84(5): 635-645. Gray, A. N., T. A. Spies and M. J. Easter (2002) Microclimatic and soil moisture responses to gap formation in coastal douglas-fir forest. Canadian Journal of Forest Research 32: 332-343. Groninger, J. W., J. R. Seiler, J. A. Peterson and R. E. Kreh (1996) Growth and photosynthetic responses of four Virginia Piedmont tree species to shade. Tree Physiology 16: 773-778. Heraud, P. and J. Beardall (2000) Changes in chlorophyll fluorescence during exposure of Dunaliella tertiolecta to UV radiation indicate a dynamic interaction between damage and repair processes. Photosynthesis Research 63(2): 123-134. Jones, R. H. and K. W. Mcleod (1990) Growth and photosynthetic responses to a range of light environments in Chinese tallowtree and Carolina ash seedlings. Forest Science 36(4): 851-862. Kamaluddin, M. and J. Grace (1993) Growth and photosynthesis of tropical forest tree seedlings (Bischofia javanica Blume) as influenced by a change in light availability. Tree Physiology 13(3): 189-201. Kato, M. C., K. Hikosaka and T. Hirose (2002) Photoinactivation and recovery of photosystem II in Chenopodium album leaves grown at different levels of irradiance and nitrogen availability. Functional Plant Biology 29: 787-795. Kato, M. C., K. Hikosaka, N. Hirotsu, A. Makino and T. Hirose (2003) The excess light energy that is neither utilized in photosynthesis nor dissipated by photoprotective mechanisms determines the rate of photoinactivation in photosystem II. Plant Cell Physiology 44: 318-325. Katahata, S., M. Naramoto, Y. Kakubari and Y. Mukai (2005) Photosynthetic acclimation to dynamic changes in environmental conditions associated with deciduous overstory phenology in Daphniphyllum humile, an evergreen understory shrub. Tree Physiology 25: 437-445. King, D. K. (1991) Tree allometry, leaf size and adult tree size in old growth forests of Western Oregon. Tree Physiology 9: 369-381. Larcher, W. (1995) Physiological plant ecology: ecophysiology and stress physiology of functional group. Springer-Verlag, Berlin. p.57-166 Leakey, A. D. B., M. C. Press and J. D. Scholes (2003) High-temperature inhibition of photosynthesis is greater under sunflecks than uniform irradiance in a tropical rain forest tree seedling. Plant, Cell and Environment 26: 1681-1690. Lee, D. W., R. A. Bone, S. L. Tarsis and D. Storch (1990) Correlates of leaf optical properties in tropical forest sun and extreme-shade plants. American Journal of Botany 77(3): 370-380. Lorenzini, G., L. Guidi, C. Nali and G. Franco (1999) Quenching analysis in polar clones to ozone. Tree Physiology 19: 607-12. Masoud, T., F. Payam, E. Kambiz, S. Jeroen and N. Lieven (2005) Response of oriental beech (Fagus orientalis Lipsky) seedlings to canopy gap size. Forestry 78(3): 1-8. Matsuki, S., K. Ogawa, A. Tanaka and T. Hara (2003) Morphological and photosynthetic response of Quercus crispula seedlings to high-light conditions. Tree Physiology 23: 769-775. Maxwell, K. and G. N. Johnson (2000) Chlorophyll fluorescence-a practical guide. Journal of Experimental Botany 51: 659-668. Mitamura, M., Y. Yamamura and T. Nakano (2008) Large-scale canopy opening causes decreased photosynthesis in the saplings of shade-tolerant conifer, Abies veitchii. Tree Physiology 29: 137-145. Muller, P., X.-P. Li and K. K. Niyogi (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiology 125: 1558-1566. Naramoto, M., S.-I. Katahata, Y. Mukai and Y. Kakubari (2006) Photosynthetic acclimation and photoinhibition on exposure to high light in shade-developed leaves of Fagus crenata seedlings. Flora 201: 120-126. Pandey, S., S. Kumry and P. K. Nagar (2003) Photosynthetic performance of Ginkgo biloba L. grown under high and low irradiance. Photosynthetica 41(4): 505-511. Quiles, M. J. (2005) Photoinhibition of photosystems I and II using chlorophyll fluorescence measurements. Journal of Biological Education 39: 136-138. Rankin, W. T. and E. J. Tramer (2002) The gap dynamics of canopy trees of a Tsuga canadensis forest community. Northeastern Naturalist 9(4): 391-406. Reich, P. B., C. Buschena, M. G. Tjoelker, K. Wrage, J. Knops, D. Tilmanand and J. L. Machado (2003) Variation in growth rate and ecophysiology among 34 grassland and savanna species under contrasting N supply: a test of functional group differences. New Phytologist 157: 617-631. Riddoch, J. G., F. E. Fasehun, B. Riddoch and D. O. Ladipo (1991) Photosynthesis and successional status of seedlings in a tropical semideciduous rain forest in Nigeria. Journal of Ecology 79: 491-503. Rohaček, K. and M. Barak (1999) Technique of the modulated chlorophyll fluorescence: basic concept, useful parameters, and some applications. Photosynthetica 37(3): 339-363. Sanchez-Gomez, D., F. Valladarers and M. A. Zavala (2006) Functional traits and plasticity in response to light in seedlings of four Iberian forest tree species. Tree Physiology 26: 1425-1433. Senevirathna, A. M. W. K., C. M. Stirling and V. H. L. Rodrigo (2003) Growth, photosynthetic performance and shade adaptation of rubber (Hevea brasiliensis) grown in nature shade. Tree Physiology 23: 705-712. Solhaug, K. A. and J. Haugen (1998) Seasonal variation of photoinhibition of photosynthesis in bark from Populus tremula L. Photosynthetica 35: 411-417. Swaine, M. D. and T. C. Whitmore (1988) On the definition of ecological species groups in tropical rain forests. Vegetatio 75: 81-86. Taiz, L. and E. Zeiger (2002) Plant Physiology. 3rd ed. Sinauer Associates. Inc. p.227-249. Turnbull, M. M. and D. J. Yates (1993) Seasonal variation in the red/far-red ration and photon flux density in an Australian sub-tropical rainforest. Agricultural and Forest Meteorology 64: 111-127. Valladares, F., J. M. Chico, I. Aranda, L. Balaguer, P. Dizengremel, E. Manrique and E. Dreyer (2002) The greater seedling high-light tolerance of Quercus robur over Fagus sylvatica is linked to a greater physiological plasticity. Trees 16: 395-403. Valladares, F., S. Arrieta, I. Aranda, D. Lorenzo, D. Sanchez-Gomez, D. Tena, F. Suarez and J. A. pardos (2005) Shade tolerance, photoinhibition sensitivity and phenotypic plasticity of Ilex aquifolium in continental Mediterranean sites. Tree Physiology 25: 1041-1052. Walters, M. B. and C. B. Field (1987) Photosynthetic light acclimation in two rainforest Piper species with different ecological amplitudes. Oecologia 72: 449-456. Wang, G. G. and W. L. Bauerle (2006) Effects of light intensity on the growth and energy balance of photosystem II electron transport in Quercus alba seedlings. Annals of Forest Science 63: 111-118. Watt, A. S. (1947) Pattern and process in the plant community. Journal of Ecology 35: 1-22. Weng, J. H., T. S. Liao, K. H. Sun, C. C. Chung, C. P. Lin and C. H. Chu (2005) Seasonal variations in photosynthesis of Picea morrisonicola growing in the subalpine region of subtropical Taiwan. Tree Physiology 25: 973-979. Weng, J. H. (2009) Relationship between allocation of absorbed light energy in PSII and photosynthetic rates of C3 and C4 plants. Acta Physiologiae Plantarum 31: 639-647. Yirdaw, E. and O. Luukkanen (2004) Photosynthetically active radiation transmittance of forest plantation canopies in the Ethiopian highlands. Forest Ecology and Management 188: 17–24.
摘要: 
為供臺灣西北部海岸林混合造林或林下更新等措施作參考,本研究擬針對二大項目標試驗:一、選擇新竹縣新豐鄉新豐段及桃園縣新屋鄉蚵殼港段之海岸林調查林分現況,以從中評估目前更新之必要性及可能具適生潛力之樹種;二、嘗試以海檬果 (Cerbera manghas)、欖仁 (Terminalia catappa) 及瓊崖海棠 (Calophyllum inophyllum) 為直播材料種於新豐段現場,並以苗圃作為對照,再者於蚵殼港段大孔隙處的現有栽植苗作生長調查,探討這些樹種對不同孔隙環境之適應,進而評估於此地造林之成效。
林分現況調查結果:林分組成皆以木麻黃 (Casuarina spp.) 為主,且已呈現衰退趨勢,朴樹 (Celtis sinensis) 有機會成為穩定族群但數量不多,可以人為方式促進更新,而黃槿及 (Hibiscus tiliaceus) 林投 (Pandanus odoratissimus) 生長良好,可混植於木麻黃林下營造成複層林模式。
直播及栽植試驗結果:依據三樹種於苗圃之試驗,形態特性上海檬果及欖仁在全光有較佳之生長量,瓊崖海棠為全光至相對光度20 % 環境較佳;光合特性上海檬果及欖仁皆以全光環境之最大淨光合速率顯著最高,瓊崖海棠於光度環境間無顯著差異;葉綠素螢光特性在全光環境下海檬果稍受影響但黎明Fv/Fm值顯示仍屬健康,其他二者無受影響。綜合結果三者可適合全光至相對光度20 % 間,然瓊崖海棠於全光下也無較佳之生長表現。而進一步對照現場試驗,海檬果發芽率及生長量皆低於苗圃海檬果,且存活率在大孔隙較低,顯示海檬果在環境惡劣處可能無法適應高光,欖仁及瓊崖海棠則發芽率甚低。
整體而言三樹種於海岸林分更新作業上,海檬果較適合直播於小孔隙,相對光度約40 % 至20 %,欖仁可直播於空曠地至各孔隙處,相對光度約20 % 以上,惟仍需有效提高二樹種發芽率;而二者栽植苗整體適應情況佳,因此也可以栽植方式種植。瓊崖海棠可嘗試與欖仁同樣之光度環境但較適合採栽植作業。而其餘栽植樹種也可作為此地區更新之選擇,較建議從林分內緣處建立以提高造林成功率。

To offer the reference of mixed forest or forest understory regeneration for coastal forest in northwest Taiwan, we directed at two objective to study: First, we investigated stand condition in coastal forest in Xinfeng section, Hsinchu county and Kekegang section, Taoyuan county, then estimated the essentiality of regeneration and the adaptive species; second, we selected seeds of the Cerbera manghas, Terminalia catappa and Calophyllum inophyllum as sowing materials, then sowed the seeds at Xinfeng field, and nursery as the control group. Moreover, we investigated transplanting seedlings at large gap in Kekegang section. To explore the adaptation of these experimental species in the different gap environment and the results of forestation of these species further.
The results of stand condition: Casuarina spp. were the major species but they showed signs of deterioration. Celtis sinensis might have an opportunity of becoming a stable population but it was deficient in quantity. This suggested that artificial manner could promote the assignments of regeneration. Furthermore, Hibiscus tiliaceus and Pandanus odoratissimus showed the greater growth performance so it could plant in the understory to construct a multistoried forest
The experiment results of the sowing seedlings and the transplanting seedlings: In the nursery’s seedling, the characteristics of morphology indicated the C. manghas and T. catappa had better growth at the full light, C. inophyllum had better growth at the relative light environment of 20 % to the full light; the characteristics of photosynthesis indicated the C. manghas and T. catappa showed the greater net photosynthetic rate at the full light, and C. inophyllum had similar values between the light environment treats; the characteristics of chlorophyll fluorescence indicated the C. manghas was slightly influenced at the full light but it was still healthy according to Fv/Fm of predawn, T. catappa and C. inophyllum were not influenced. Summarizing the above results, seedlings of three species were suitable at the light environment of 20 % to the full light, but C. inophyllum couldn’t have better growth at the full light. Contrast to the field’s seedling further, sowing seedlings of the C. manghas performed lower germination percentage and morphological sections than the nursery’s seedlings, and lower survival rate at large gap. This indicated that C. manghas might not adapt to high light in harsh environments. Germination percentage of the T. catappa and C. inophyllum was very low.
Summarizing the sowing seedlings results, C. manghas was suitable for sowing to small gap which were in the light of 20 % to 40 % and T. catappa was suitable for sowing to gap or open site which were above the light of 20 % when implementing understory regeneration for coastal forest, but it required on the premise that effectively improvement of the germination percentage; moreover, C. manghas and T. catappa had good adaptation, hence they were also suitable for planting. C. inophyllum was also suitable in the same light environment with T. catappa, but it was more proper for planting.
The other transplanting seedlings could be used for regeneration in the region. To improve successful probability, it suggested that transplanting seedlings planted in the interior of stand from the start.
URI: http://hdl.handle.net/11455/66197
其他識別: U0005-1508201219245100
Appears in Collections:森林學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-101-7098033021-1.pdf5.59 MBAdobe PDFThis file is only available in the university internal network   
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.