Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/66224
標題: 武陵地區防火線土壤性質與菌根苗木之研究
Study on the soil properties and mycorrhizal seedling growth in fire line of Wuling area
作者: 吳爵考
Wu, Jue-Kao
關鍵字: 大頭茶;Gordonia axillaris;防火線;防火林帶;菌根菌;fire line;vegetative fire break;arbuscular mycorrhizal fungi
出版社: 森林學系所
引用: 王明光、蔣先覺、白創文、金恆鑣 (2000) 台灣高山森林土壤研究的近況。土壤與環境 3(1): 43-48。 白創文、邱志郁、王明光 (2005) 酸化森林土壤中的鋁及其植物毒性。台灣林業 31(6): 22-28。 江博能、王明光 (2007) 人工林經營對土壤養分循環影響。林業研究專訊 14(1): 14-16。 林子超 (2009) 台灣中部地區玉山箭竹林土壤內生菌根菌調查。特有生物研究 11(2): 79-91。 林素禎、洪崑煌、吳繼光 (2000) 囊叢枝內生菌根菌在臺灣代表性土壤中之分布。中華農業研究 49(4): 65-80。 林哲毅 (1999) 不同土壤中大頭茶菌根接種效應之研究。國立中興大學森林學系碩士論文。 林朝欽 (1992) 台灣地區國有林之森林火分析(1963-1991年)。林業試驗所研究報告季刊 7(2): 169-178。 林朝欽 (1993) 國有林大甲溪事業區之森林火災及防火線。林業試驗所研究報告季刊 8(2): 159-167。 林誠興、黃家明 (2004) 燃料/氣候與地理因素對森林火災影響之定量分析。台灣林業 30(3): 26-35。 郭晉維 (2012) 台灣中部武陵地區防火樹種之篩選。國立中興大學森林學系碩士論文。 郭魁士 (1977) 土壤學。中國書局。 夏漢平、高子勤 (1993) 磷酸鹽在白漿土中的吸附與解吸特性。土壤學報 30(2): 146-157。 洪富文、孔繁熙、張淑玲 (1986) 薩爾瓦多型銀合歡苗木在銨態及硝酸態氮源介質的生長。林業試驗所研究報告季刊 1(1): 1-8。 連深、鍾仁賜 (1995) 土壤分析手冊。中華土壤肥料學會。369-370 頁。 陳士寬 (2008) 穴盤型式、單格株數、海藻萃取液與叢枝菌根菌對北蔥種苗生長之影響。國立中興大學園藝學系碩士學位論文。 莊俊逸、王亞男、王明光、吳星輝 (2004) 塔塔加高山地區鐵杉、玉山箭竹及草原表土之物理與化學性質比較。臺大實驗林研究報告 18(1): 35-40。 張競元 (2012) 雪山高山生態系主要植群型之土壤養分動態。國立中興大學森林學系碩士論文。 黃清吟、林朝欽 (2005) 臺灣地區國有林森林火之特性分析。中華林學季刊 38(4): 449-464。 黃清吟、陸聲山、陳財輝、陳永修、蔡佳彬、林朝欽 (2009) 國有林大甲溪事業區之防火林帶現況探討。中華林學季刊 42(1): 123-135。 黃瑞彰、林晉卿、黃山內 (2007) 叢枝菌根菌對番茄在鹽分逆境下生育影響評估。台南區農業改良場研究彙報 50: 9-23。 曾曙才、蘇志堯、陳北光、俞元春 (2005) VA菌根真菌對植物養分吸收與傳遞的影響。西南林學院學報 25(1): 72-75。 劉仕平、張玲琪、李成雲、郭仕平、楊春燕 (2003) VA 菌根營養生理研究概況及其應用前景。西南農叢學報 16(2): 93-97。 劉永俊、馮虎元 (2010) 叢枝菌根真菌系統分類及群落研究技術進展。應用生態學報 21(6): 1573-1580。 劉業經、呂福原、歐辰雄 (1994) 台灣樹木誌。國立中興大學農學院出版委員會。439 頁。 蔡柏岩、葛菁萍、接偉光、閻秀峰 (2009) 黃檗根圈叢枝菌根真菌菌群組成。菌物學報 28(4): 612-620。 蔣先覺、洪富文、胡弘道 (1994) 三個高山林土壤中鐵、鋁之移動與聚積。林業試驗所研究報告季刊 9(4): 375-388。 應小芳、劉鵬、徐根娣 (2003) 土壤中的鋁及其植物效應的研究進展。生態環境 12(2): 237-239。 鍾旭和、顏江河 (1994) 菌根接種與土壤含水量對台灣杉幼苗生長之影響。林業試驗所研究報告季刊 9(4): 291-298。 鐘旭和、顏江河 (1997) 煤礦棄土地大頭茶抗鋁毒害機制之研究。台灣林業科學 12(2): 167-175。 龍良鯤、羊宋貞、姚青、朱紅惠 (2005) AM真菌DNA的提取與PCR-DGGE分析。菌物學報 24(4): 564-569。 Aguilera, P., F. Borie, A. Seguel and P. Cornejo (2011) Fluorescence detection of aluminum in arbuscular mycorrhizal fungal structures and glomalin using confocal laser scanning microscopy. Soil Biology and Biochemistry 43: 2427-2431. Al-Karaki, G. N. and R. B. Clark (1988) Growth, mineral acquisition, and water use by mycorrhizal wheat grown under water stress. Journal of Plant Nutrition 21(2): 263-276. Alkan, N., V. Gadkar, O. Yarden and Y. Kapulnik (2006) Analysis of quantitative interactions between two species of arbuscular mycorrhizal fungi Glomus mosseae and G. intraradices by real-time PCR. Applied and Environmental Microbiology 72: 4192-4199. Alloush, G. A., S. K. Zeto and R. B. Clark (2000) Phosphorus source, organic matter, and arbuscular mycorrhiza effects on growth and mineral acquisition of chickpea grown in acidic soil. Journal of Plant Nutrition 23(9): 1351-1369. Arai, Y. and D. L. Sparks (2007) Phosphate reaction dynamics in soils and soil components: A multiscale approach. Advances in Agronomy 94: 135-179. Asrar, A. A., G. M. Abdel-Fattah and K. M. Elhindi (2012) Improving growth, flower yield, and water relations of snapdragon (Antirhinum majus L.) plants grown under well-watered and water-stress conditions using arbuscular mycorrhizal fungi. Photosynthetica 50(2): 305-316. Auge, R. M., K. A. Scheke and R. L.Wample (1987) Leaf water and carbohydrate status of VA mycorrhizal rose exposed to drought stress. Plant Soil 99: 291-302. Auge, R. M. (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11: 3-42. Baar, J. and F. W. de Vries (1995) Effects of manipulation of litter and humus layers on ectomycorrhizal colonization potential in Scots pine stands of different age. Mycorrhiza 5(4): 267-272. Baar, J. (1996) The ectomycorrhizal flora of primary and secondary stands of Pinus sylvestris in relation to soil conditions and ectomycorrhizal succession. Journal of Vegetation Science 7(4): 497-504. Bago, B., C. Cano, C. Azcon-Aguilar, J. Samson, A. P. Coughlan and Y. Piche (2004) Differential morphogenesis of the extraradical mycelium of an arbuscular mycorrhizal fungus grown monoxenically on spatially heterogeneous culture media. Mycologia 96: 452-462. Ballard, T. M. (2000) Impacts of forest management on northern forest soils. Forest Ecology and Management 133: 37-42. Bastolla, U., M. A. Fortuna, A. Pascual-Garcia, A. Ferrera, B. Luque and J. Bascompte (2009) The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458: 1018-1021. Beatty, S. W. and E. L. Stone (1986) The variety of soil microsites created by tree falls. Canadian Journal of Forest Research 16(3): 539-548. Blumwald, E. and R. Poole (1987) Salt-tolerance in suspension cultures of sugar beet. Induction of Na+/H+-antiport activity at the tonoplast by grown in salt. Plant Physiology 83: 884-887. Bolan, N. S. (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphates by plants. Plant Soil 134: 189-207. Borie, F., R. Rubio, A. Morales, G. Curaqueo and P. Cornejo (2010) Arbuscular mycorrhizae in agricultural and forest ecosystems in chile. Journal of Soil Science and Plant Nutrition 10(3): 185-206. Bray, R. H. and L. T. Kurtz (1945) Determination of total, organic, and available forms of phosphorus in soils. Soil Science 59(1): 39-46. Busse, M. D. and J. R. Ellis (1985) Vesicular-arbuscular mycorrhizal (Glomus fasciculatum) influence on soybean drought tolerance in high phosphorus soil. Canadian Journal of Botany 63(12): 2290-2294. Cameron, R. S., G. S. P. Ritchie and A. D. Robson (1986) Relative toxicities of inorganic aluminum complexes to barley. Proceedings of the Soil Science Society of America 50: 1231-1236. Cao, M. and F. I. Woodward (1998) Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature 393: 249-252. Chapin III, F. S., H. A. Mooney, M. C. Chapin and P. Matson (2004) Principles of Terrestrial Ecosystem Ecology. Springer. New York, USA. Clark, R. B., R. W. Zobel and S. K. Zeto (1999) Effects of mycorrhizal fungus isolates on mineral acquisition by Panicum virgatum in acidic soil. Mycorrhiza 9: 167-176. Cornejo, P., C. Azcon-Aguilar, J. M. Barea and N. Ferrol (2004) Temporal temperature gradient gel electrophoresis (TTGE) as a tool for the characterization of arbuscular mycorrhizal fungi. FEMS Microbiology Letters 241(2): 265-270. Craine, J. M., C. Morrow and N. Fierer (2007) Microbial nitrogen limitation increases decomposition. Ecology 88(8): 2105-2113. Cuenca, G., Z. D. Andrade and E. Meneses (2001) The presence of aluminum in arbuscular mycorrhizas of Clusia multiflora exposed to increased acidity. Plant and Soil 231(2): 233-241. Cumming, J. R. and J. Ning (2003) Arbuscular mycorrhizal fungi enhance aluminium resistance of broomsedge (Andropogon virginicus L.). Journal of Experimental Botany 54(386): 1447-1459. Delhaize, E., B. D. Gruber and R. R. Ryan (2007) The roles of organic anion permeases in aluminium resistance and mineral nutrition. FEBS Letter 581(12): 2255-2262. Demoling, F., D. Figueroa and E. Baath (2007) Comparison of factors limiting bacterial growth in different soils. Soil Biology and Biochemistry 39(10): 2485-2495. Dickie, I. A., R. C. Guza, S. E. Krazewski and P. B. Reich (2004) Shared ectomycorrhizal fungi between a herbaceous perennial (Helianthemum bicknellii) and oak (Quercus) seedlings. New Phytologist 164(2): 375-382. Dudhane, M., M. Borde and P. K. Jite (2012) Effect of aluminium toxicity on growth responses and antioxidant activities in Gmelina arborea Roxb. inoculated with AM fungi. International Journal of Phytoremediation 14(7): 643-655. Ezawa, T., T. R. Cavagnaro, S. E. Smith, F. A. Smith and R. Ohtomo (2003) Rapid accumulation of polyphosphate in extraradical hyphae of an arbuscular mycorrhizal fungus as revealed by histochemistry and a polyphosphate kinase/luciferase system. New Phytologist 161(2): 387-392. Fageria, V. D. (2001) Nutrient interactions in crop plants. Journal of Plant Nutrition 24(8): 1269-1290. Freese, D., S. E. A. T. M. van der Zee and W. H. van Riemsdijk (1992) Comparison of different models for phosphate sorption as a function of the iron and aluminium oxides of soils. Journal of Soil Science 43(4): 729-738. Gerdemann, J. W. and T. H. Nicolson (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society 46(2): 235-244. Glaser, B., M.-B. Turrion, D. Solomon, A. Ni and W. Zech (2000) Soil organic matter quantity and quality in mountain soils of the Alay Range, Kyrgyzia, affected by land use change. Biology and Fertility of Soils 31(5): 407-413. Gonzalez-Chavez, C., J. D’Haen, J. Vangronsveld and J. C. Dodd (2002) Copper sorption and accumulation by the extraradical mycelium of different Glomus spp. (arbuscular mycorrhizal fungi) isolated from the same polluted soil. Plant and Soil 240: 287-297. Gonzalez-Guerrero, M., L. Melville, N. Ferrol, J. Lott, C. Azcon-Aguilar and L. Peterson (2008) Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices. Canadian Journal of Microbiology 54: 103-110. Govindarajulu, M., P. E. Pfeffer, H. R. Jin, J. Abubaker, D. D. Douds, J. W. Allen, H. Bucking, P. J. Lammers and Y. Shachar-Hill (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435: 819-823. Grauer, U. E. and W. J. Horst (1990) Effect of pH and nitrogen source on aluminium tolerance of rye (Secale cereal L.) and yellow lupin (Lupinus luteus L.) Plant and Soil 127(1): 13-21. Hawkins, J. H., A. Johansen and E. George (2000) Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil 226: 275-285. Hepler, P. K. (2005) Calcium: a central regulator of plant growth and development. The Plant Cell 17: 2142-2155. Hodge, A., C. D. Campbell and A. H. Fitter (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413: 297-299. Horst, M. (1991) Mechanisms of adaptation of plants to acid soils. Plant and Soil 134: 1-20. Ilacob, V. (1989) Agriculture compendium for rural development in the tropics and subtropics. Elservier Science Publishing Company Inc. 3 rd ed. Ishida, T. A., K. Nara and T. Hogetsu (2007) Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer-broadleaf forests. New Phytologist 174(2): 430-440. Jansa, J., F. A. Smith and S. E. Smith (2008) Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytologist 177(3): 779-789. Javot, H., N. Pumplin and M. J. Harrison (2007) Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell and Environment 30(3): 310-322. Jin, H., P. E. Pfeffer, D. D. Douds, E. Piotrowski, P. J. Lammers, Y. Shachar-Hill (2005) The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytologist 168(3): 687-696. Johnson, D., P. J. Vandenkoornhuyse, J. R. Leake, L. Gilbert, R. E. Booth, J. P. Grime, J. P. W. Young and D. J. Read (2004) Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytologist 161: 503-515. Jones, D. L., A. Hodge and Y. Kuzyakov (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytologist 163(3): 459-480. Jungk, A. and N. Claassen (1989) Availability in soil and acquisition by plants as the basis for phosphorus and potassium supply to plants. Plant Nutrition and Soil Science 152(2): 151-157. Jurinak, J. J., L. M. Dudley, M. F. Allen and, W. G. Knight (1986) The role of calcium oxalate in the availability of phosphorus in soils of semiarid regions: A thermodynamic study. Soil Science 142: 255-262. Kastner, M. (2000) “Humification” process or formation of refractory soil organic matter. Biotechnology 2nd ed. p. 349-378. Kirschbaum, M. U. F. (1995) The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biology and Biochemistry 27(6): 753-760. Kennedy, P. G. and T. D. Bruns (2005) Priority effects determine the outcome of ectomycorrhizal competition between two Rhizopogon species colonizing Pinus muricata seedlings. New phytologist 166(2): 631-638. Khan, I. A., A. Shahbaz and M. Sarwat (2003) Yield and water use efficiency (WUE) of Avena sativa as influenced by vesicular arbuscular mycorrhizae (VAM). Asian Journal of Plant Sciences 2(4): 371-373. Kingsbury, R. W. and E. Epstein (1986) Salt sensitivity in wheat a case for specific ion toxicity. Plant Physiology 80(3): 651-654. Koide, R. T. (2000) Functional complementarity in the arbuscular mycorrhizal symbiosis. New Phytologist 147: 233-235. Koltai, H. and Y. Kapulnik (2010) Arbuscular mycorrhizal symbiosis under stress conditions: Benefits and costs. Symbioses and Stress 17: 339-356. Kongpun, A., B. Dell and B. Rerkasem (2011) Alleviating acid soil stress in cowpea with a local population of arbuscular mycorrhizal fungi. African Journal of Biotechnology 10(65): 14410-14418. Konig, N., P. Baccini and B. Ulrich (1986) The influence of organic matter in the translocation of metals between soil and soil solution of an acid forest soil. Plant Nutrition and Soil Science 149(1): 68-82. Koske, R. E. and J. N. Gemma (1989) A modified procedure for staining roots to detect VA mycorrhizas. Mycological Research 94(4): 486-505. Kramer, P. J. (1981) Carbon dioxide concentration, photosynthesis and dry matter production. BioScience 31: 29-33. Kuzyakov, Y. (2002) Review: factors affecting rhizosphere priming effects. Journal of Plant Nutrition and Soil Science 165(4): 382-396. Lambers, H., J. A. Raven, G. R. Shaver and S. E. Smith (2008) Plant nutrient-acquisition strategies change with soil age. Trends in Ecology and Evolution 23(2): 95-103. Lee, J., S. Lee and J. P. W. Young (2008) Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiology Ecology 65(2): 339-349. Lopez-Pedrosa, A., M. Gonzalez-Guerrero, A. Valderas, C. Azcon-Aguilar and N. Ferrol (2006) GintAMT1 encodes a functional high-affinity ammonium transporter that is expressed in the extraradical mycelium of Glomus intraradices. Fungal Genetics and Biology 43(2): 102-110. Lovett, G. M., K. C. Weathers, M. A. Arthur and J. C. Schultz (2004) Nitrogen cycling in a northern hardwood forest: do species matter? Biogeochemistry 67: 289-308. Ma, J. F., P. R. Ryan and E. Delhaize (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends in Plant Science 6: 273-278. MacDonald, C. C. (1977) Methods of soil and tissue analysis used in the analytical laboratory. Canadian Forestry Service Information Report MM-X-78. Marschner, H. and V. Romheld (1983) In vivo Measurement of root-induced pH changes at the soil-root interface: Effect of plant species and nitrogen source. Zeitschrift fur Pflanzenphysiologie 111(3): 241-251. Marschner, H. (1991) Mechanisms of adaptation of plants to acid soils. Plant and Soil 134: 1-20. Marschner, H. (2006) Mineral Nutrition of Higher Plants. 2nd ed. Academic Press, San Diego, CA. McGill, W. B. and C. V. Cole (1981) Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma 26(4): 267-286. McLean, E. O. (1982) Soil pH and lime requirement. In: Page et al. (eds.) Methods of Soil Analysis. Part II. Chemical and Microbiological Properties 2nd ed. ASA. CSSA. SSSA. Madison, Wisconsin. Mengel, K. and E. A. Kirkby (2001) Principles of Plant Nutrition. 5th Edition. Kluwer Academic Publishers. Miransari, M. (2010) Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biology 12: 563-569. Moore, P. D. and S. B. Chapman (1986) Methods in Plant Ecology. 2nd ed. Blackwell Scientific Publications. Oxford, London, Edinburgh. Muofhe, M. L. and F. D. Dakora (2000) Modification of rhizosphere pH by the symbiotic legume Aspalathus linearis growing in a sandy acidic soil. Plant Physiol 27: 1169-1173. Neumann, G. and V. Romheld (1999) Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant and Soil 211(1): 121-130. Nichols, K. A. (2003) Characterization of Glomalin, A Glycoprotein Produced by Arbuscular Mycorrhizal Fungi. PhD dissertation, University of Maryland, MD. Nurlaeny, N., H. Marschner and E. George (1996) Effects of liming and mycorrhizal colonization on soil phosphate depletion and phosphate uptake by maize (Zea mays L.) and soybean (Glycine max L.) grown in two tropical acid soils. Plant Soil 181(2): 275-285. Nye, P. H. (1981) Changes of pH across the rhizosphere induced by roots. Plant and Soil 61(1-2): 7-26. Opik, M., M. Moora, J. Liira, U. Koljalg, M. Zobel and R. Sen (2003) Divergent arbuscular mycorrhizal fungal communities colonize roots of Pulsatilla spp. in boreal Scots pine forest and grassland soils. New Phytologist 160(3): 581-593. Paul, E. and F. Clark (1996) Soil Microbiology and Biochemistry. Academic, New York. Pavan, M. A. and F. T. Bingham (1982) Toxicity of aluminum to coffee seedlings grown in nutrient solution. Soil Science Society of America Journal 46(5): 993-997. Perez-Tienda, J., P. S. Testillano, R. Balestrini, V. Fiorilli, C. Azcon-Aguilar and N. Ferrol (2011) GintAMT2, a new member of the ammonium transporter family in the arbuscular mycorrhizal fungus Glomus intraradices. Fungal Genetics and Biology 48(11): 1044-1055. Perez-Tienda, J., A. Valderas, G. Camanes, P. Garcia-Agustin, N. Ferrol (2012) Kinetics of NH4+ uptake by the arbuscular mycorrhizal fungus Rhizophagus irregularis. Mycorrhiza 22(6): 485-491. Pfeiffer, C. M. and H. E. Bloss (1988) Growth and nutrition of guayule (Parthenium argentatum) in a saline soil as influenced by vesicular-arbuscular mycorrhiza and phosphorus fertilization. New Phytologist 108(3): 315-321. Phukan, R., S. R. Sarmah, P. Dutta, I. Phukan, R. Begum, A. J. Tanti, S. Debnath and B. K. Barthakur (2008) Effect of arbuscular mycorrhizal symbiosis and plant growth promoting microbes in tea plantation of North East India. Journal of Mycopathological Research 46(1): 33-39. Poschenrieder, C., B. Gunse, I. Corrales and J. Barcelo (2008) A glance into aluminum toxicity and resistance in plants. Science of the Total Environment 400: 356-368. Quinton, J. N., G. M. Edwards and R. P. C. Morgan (1997) The influence of vegetation species and plant properties on runoff and soil erosion: results from a rainfall simulation study in south east Spain. Soil Use and Management 13(3): 143-148. Reddy, S. R., P. K. Pindi and S. M. Reddy (2005) Molecular methods for research on arbuscular mycorrhizal fungi in India: Problems and prospects. Current Science 89: 1699-1709. Rillig, M. C., S. F. Wright, K. A. Nichols, W. F. Schmidt and M. S. Torn (2001) Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant and Soil 233: 167-177. Rillig, M. C., S. F. Wright and V. T. Eviner (2002) The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant and Soil 238: 325-333. Rillig, M. C., P. W. Ramsey, S. Morris and E. A. Paul (2003) Glomalin, an arbuscular mycorrhizal fungal soil protein, responds to land-use change. Plant and Soil 253: 293-299. Rillig, M. C. (2004) Arbuscular mycorrhizae, glomalin, and soil aggregation. Canadian Journal of Soil Science 84: 355-363. Rout, G. R., S. Samantaray and P. Das (2001) Aluminium toxicity in plants: a review. Agronomie 21(1): 3-21. Rowell, D. L. (1988) Soil acidity and alkalinity. Russell''s Soil Conditions and Plant Growth p. 844-898. Ruiz-Lozano, J. M., R. Azcon and M. Gomez (1995) Effects of arbuscular mycorrhizal Glomus species on drought tolerance: Physiological and nutritional plant responses. Applied Environmental Microbiology 61: 456-460. Runge, M. and M. W. Rode (1991) Effects of Soil Acidity on Plant Associations. Soil Acidity p. 183-202. Ryan, P. R., E. Delhaize and D. L. Jones (2001) Function and mechanism of organic anion exudation from plant roots. Annual Review of Plant Physiology and Plant Molecular Biology 52: 527-560. Schaberg, P. G., D. H. DeHayes, G. J. Hawley, G. R. Strimbeck, J. R. Cumming, P. F. Murakami and C. H. Borer (2000) Acid mist and soil Ca and Al alter the mineral nutrition and physiology of red spruce. Tree Physiology 20: 73-85. Schaedle, M., F. C. Thornton, D. J. Raynal and H. B. Tepper (1989) Response of tree seedlings to aluminum. Tree Physiology 5(3): 337-356. Seguel, A., J. R. Cumming, K. Klugh-Stewart, P. Cornejo and F. Borie (2013) The role of arbuscular mycorrhizas in decreasing aluminium phytotoxicity in acidic soils: a review. Mycorrhiza 23(3): 167-183. Shaul, O. (2002) Magnesium transport and function in plants: the tip of the iceberg. Biometals 15(3): 307-321. Shen, S. K. and Y. H. Wang (2011) Arbuscular mycorrhizal (AM) status and seedling growth response to indigenous AM colonisation of Euryodendron excelsum in China: implications for restoring an endemic and critically endangered tree. Australian Journal of Botany 59(5): 460-467. Shi, H., F. J. Quintero, J. M. Pardo and J.-K. Zhu (2002) The putative plasma membrane Na+/H+ Antiporter SOS1 controls long-distance Na+ transport in plants. The Plant Cell 14(2): 465-477. Simon, L., M. Lalonde and T. D. Bruns (1992) Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots. Applied and Environmental Microbiology 58(1): 291-295. Smith, S. E. and D. J. Read (2008) Mycorrhizal Symbiosis. Academic Press, Cambridge. Soukupova, L., H. Hršelova, H. Gryndlerova, V. Merhautova and M. Gryndler (2008) Alkali-extractable soil organic matter: An important factor affecting the mycelial growth of ectomycorrhizal fungi. Applied Soil Ecology 40(1): 37-43. Stark, J. M. and S. C. Hart (1997) High rates of nitrification and nitrate turnover in undisturbed coniferous forests. Nature 385: 61-64. Steinberg, P. D. and M. C. Rillig (2003) Differential decomposition of arbuscular mycorrhizal fungal hyphae and glomalin. Soil Biology and Biochemistry 35: 191-194. Stevenson, F. J. and M. A. Cole (1999) Cycles of Soils: Carbon, Nitrogen, Phosphorus, Sulfur, Micronutrients. John Wiley and Sons p. 231-284. Stumm, W. and J. J. Morgan (1996) Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. Wiley, New York p. 1022. Subramanian, K. S. and C. Charest (1995) Influence of arbuscular mycorrhizas on the metabolism of maize under drought stress. Mycorrhiza 5: 273-278. Subramanian, K. S. and C. Charest (1999) Acquisition of N by external hyphae of an arbuscular mycorrhizal fungus and its impact on physiological responses in maize under drought-stressed and well-watered conditions. Mycorrhiza 9(2): 69-75. Tanaka, Y. and K. Yano (2005) Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant, Cell and Environment 28: 1247-1254. Taylor, D. L. and T. D. Bruns (1999) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: minimal overlap between the mature forest and resistant propagule communities. Molecular Ecology 8(11): 1837-1850. Tiwari, K. R., B. K. Sitaula, R. M. Bajracharand and T. Borresen (2009) Runoff and soil loss responses to rainfall, land use, terracing and management practices in the Middle Mountains of Nepal. Acta Agriculturae Scandinavica, Section B - Soil and Plant Science 59(3): 197-207. Toussaint, J. P., M. St-Arnaud and C. Charest (2004) Nitrogen transfer and assimilation between the arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith and Ri T-DNA roots of Daucus carota L. in an in vitro compartmented system. Canadian Journal of Microbiology 50(4): 251-260. van Tuinen, D., E. Jacquot, B. Zhao, A. Gollotte and V. Gianinazzi-Pearson (1998) Characterization of root colonization profiles by a microcosm community of arbuscular mycorrhizal fungi using 25S rDNA-targeted nested PCR. Molecular Ecology 7(7): 879-887. Venterink, H. O., T. E. Davidsson, K. Kiehl and L. Leonardson (2002) Impact of drying and re-wetting on N, P and K dynamics in a wetland soil. Plant and Soil 243(1): 119-130. Wakelin, S. A., L. M. Macdonald, S. L. Rogers, A. L. Gregg, T. P. Bolger and J. A. Baldock (2008) Habitat selective factors influencing the structural composition and functional capacity of microbial communities in agricultural land. Soil Biology and Biochemistry 40: 803-813. Walbridge, M. R. (1991) Phosphorus availability in acid organic soils of the lower North Carolina coastal plain. Ecology 72: 2083-2100. Wilson, I. G. (1997) Inhibition and facilitation of nucleic acid amplification. Applied and Environmental Microbiology 63: 3741-3751. Wright, S. F. and A. Upadhyaya (1996) Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Science 161(9): 575-586. Yang, L. T., H. X. Yang, N. T. Jiang and L. S. Chen (2011) Mechanisms of aluminum-tolerance in two species of citrus: Secretion of organic acid anions and immobilization of aluminum by phosphorus in roots. Plant Science 180(3): 521-530. Yang, Z. D., X. R. Feng and J. P. Mou (1996) Effect of aluminium on the growth and some physiological characters of Eucalyptus seedlings. Guangxi Sciences 3(4): 30-33. Zuccarini, P. and P. Okurowska (2008) Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress. Journal of Plant Nutrition 31: 497-513.
摘要: 
大甲溪事業區於 1960年代大面積種植臺灣二葉松 (Pinus taiwanensis),為顧及火災潛在危險性因而闢建防火線,但防火線成效不彰,現今多以植生防火林帶取代之,然復育成效不佳,故本研究希望透過接種菌根幫助防火樹種生長,使造林苗木得以存活並生育良好。本研究調查防火線土壤化學性質,以了解土壤的限制因子,並調查防火線植群菌根感染情況與菌種調查,隨後將大頭茶 (Gordonia axillaris) 種子苗接種分離自防火線之菌根菌,栽植於防火線及溫室,觀察菌根對苗木之效益。結果顯示,防火線土壤呈酸性 pH 值在 4.80-5.20,土壤可置換性鋁含量高 (287.02-671.89 μg g-1),土壤有效磷不足 (0.01-3.11 μg g-1),屬植物的缺磷範圍,全氮量 (0.19-0.31%) 與有機質 (4.38-7.84%) 則屬正常範圍。防火線植群皆有菌根感染情況,調查發現菌根菌有 Acaulospora mellea、Ac. spinosa、Glomus. constrictum、Gl. mosseae、Paraglomus occultum。大頭茶種子苗接種菌根後降低死亡率,栽植於防火線之苗木植體鉀含量顯著較高,鈉、鋁含量顯著較低,且土壤球囊霉素相關土壤蛋白質 (glomalin-related soil protein, GRSP) 顯著較高,溫室試驗之菌根苗木苗高、葉面積、平均葉面積及生物量與植體氮、磷、鉀、鈣、鎂和土壤 GRSP 含量都顯著較高,雖鈉、鋁亦較高,但苗木生長健康且無病徵,從變性梯度凝膠電泳 (denaturing gradient gel electrophoresis) 發現苗木確實有菌根菌感染情況。因此菌根應是植物在防火線生長的關鍵因子,且試驗亦證實接種菌根具有菌根效益,減少苗木因逆境造成的生長遲緩或死亡的情況。

Dajashi National Forest had been established by way of a large-scale cultivation of Pinus taiwanensis in the 1960s. The fire line was built to prevent the potential risk of fire, but it was ineffective. Now the fire line is replaced by vegetative fire break, but it’s difficult to reforest. Therefore, the aim of this study was to improve the growth of fire-resistant tree species through inoculating arbuscular mycorrhizal fungi. This study investigated the soil chemical properties in fire line to identify the soil limiting factors, surveyed the status of mycorrhiza colonization and examined mycorrhizal species in fire line. To observe the benefit of mycorrhiza inoculation, seedlings of Gordonia axillaris were inoculated with mycorrhizal fungi spores isolated from fire line, then planted in fire line and greenhouse. The results showed that the soil was acidic, with pH value between 4.80 to 5.20. Soil exchangeable Aluminum was in high concentration between 287.02 to 671.89 μg g-1. Soil available phosphorus concentration was low between 0.01 to 3.11 μg g-1, which belonged to a phosphorus deficient range of plants. Total soil nitrogen (0.19-0.31%) and soil organic matter (4.38-7.84%) were moderate. Fire line vegetation were all mycorrhizaed, and the mycorrhizal species Acaulospora mellea, Ac. spinosa, Glomus. constrictum, Gl. mosseae and Paraglomus occultum were found. After Go. axillaris seedlings were inoculated with mycorrhiza, the death rate decreased. The accumulation of potassium and the glomalin-related soil protein were significantly higher in the field experiments of inoculation treatments, and sodium and aluminum accumulation were significant decreased. On the other hand, the Go. axillaris seedings height, leaf area, average leaf area, dry weight and tissue nutrients (N, P, K, Ca, Mg) of inoculation treatment in greenhouse experiments and the glomalin-related soil protein in soil were also significantly increased. Although the accumulation of sodium and aluminum were increased, plants grew well and healthly. Denaturing gradient gel electrophoresis profile of rRNA genes was present in arbuscular mycorrhizal fungi on roots of Go. axillaris seedings. This study indicated that the most important factor of plant growth in fire line was mycorrhiza, and the experiment proved that mycorrhiza inoculation could prevent seedlings from growth retardation or death due to stress.
URI: http://hdl.handle.net/11455/66224
其他識別: U0005-2407201316135100
Appears in Collections:森林學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.