Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/66232
標題: | 溫度對雪山地區玉山杜鵑開花物候之影響 Effect of Temperature on Rhododendron pseudochrysanthum Hay. Flowering Phenology in Mt. Xue |
作者: | 潘振彰 Pan, Chen-Chang |
關鍵字: | 高山植物;Alpine plants;玉山杜鵑;物候學;始花期;氣候變遷;雪山地區;Rhododendron pseudochrysanthum;phenology;first flowering date;climate change;Mt. Xue | 出版社: | 森林學系所 | 引用: | 刁永強、廖康、許正、耿文娟、楊磊、皮裡東 (2010) 新疆野生杏開花生物學特性及授粉受精初步研究。新疆農業科學47(5): 947-951。 中央氣象局 (2009) 全球平均溫度及台臺灣測站長期趨勢監測報告。http://www.cwb.gov.tw/中央氣象局網站資料。 方瑞征、閔天祿 (1995) 杜鵑屬植物區系的研究。雲南植物研究 17(4): 1-3。 王偉、邱清安、蔡尚悳、許俊凱、曾喜育、呂金誠 (2010) 雪山主峰沿線植物社會調查研究。林業研究季刊32(3): 15-34。 白潔、葛全勝、戴君虎、王英 (2010) 西安木本植物物候與氣候要素的關係。植物生態學報 34(11): 1274-1282。 何明友、方明淵、胡文光、胡琳貞 (2006) 中國植物志-杜鵑花科。中國植物志第57卷第2分冊。 何春蓀(1986) 台臺灣地質概論-臺灣地質圖說明書。經濟部中央地質調查所第二版。 呂金誠、歐辰雄 (2009) 雪山地區高山生態系整合調查。雪霸國公園管理處研究報告。 李倩、肖建忠、李志斌、白霄霞 (2009) 高山杜鵑花芽分化臨界期生理生化研究。河北農業大學學報 32(1): 47-50。 周愛琴、宋玉麗、于青 (2001) 溫度對桃樹萌芽開花生物學特性的影響。煙臺果樹 2001(3): 30-31。 邱垂豐 (2005) 茶樹開花之研究。國立中興大學農藝學系博士論文。270頁。 邱清安、曾彥學、王志強、廖敏君、曾喜育 (2010) 臺灣高山寒原植群之商榷及其在生態氣候觀點下的潛在位置。林業研究季刊32(3): 89-102。 紀瑋婷 (2009) 臺灣西半部金毛杜鵑開花韻律分析與族群分布之研究。臺灣大學生態學與演化生物學研究所學位論文。146頁。 徐瓏綺 (2004) 玉山、森氏與紅星杜鵑之親緣關係與後冰河期之遷徙。中國文化大學生物科技研究所碩士論文。 常兆丰、邱國玉、趙明、楊自輝、韓富貴、仲生年、李愛德、劉淑娟 (2009) 民勤荒漠區植物物候對氣候變暖的響應。生態學報 29(10): 5195-5206。 張又敏 (2006) 金毛杜鵑開花模式之研究。靜宜大學生態學研究所碩士論文。57頁。 郭金麗、張玉蘭 (1999) 蘋果梨花芽分化期蛋白質、澱粉代謝的研究。內蒙古農牧學院學報 20(2): 80-82。 陳盈雯 (2010) 臺灣原生杜鵑棲地地文環境特性之研究。國立中興大學園藝學系碩士論文。 曾彥學、王志強、蔡智勇 (2009) 雪霸國家公園物種清單更新維護計畫-維管束植物。雪霸國家公園管理處委託辦理計畫。114頁。 閔天祿、方瑞征 (1979) 杜鵑屬 (Rhododendron L.) 的地理分布及其起源問題的探討。雲南植物研究 1(2): 17-28。 黃啟俊 (2005) 台臺灣產玉山杜鵑複合群之親緣地理學研究。國立成功大學生命科學系碩士論文。 劉棠瑞、蘇鴻傑 (1983) 森林植物生態學。臺灣商務印書館。 鄭杏倩 (2008) 探討台灣映山紅組杜鵑的親緣關係。國立臺灣師範大學生命科學研究所碩士論文。63頁。 鄭婷文 (2011) 雪山主峰東線步道維管束植物相之研究。國立中興大學森林系碩士論文。 鄭婷文、曾喜育、邱清安、劉思謙、王秋美、曾彥學 (2012) 雪山主峰東線步道維管束植物生活型之研究。國家公園學報 22(1): 41-51。 謝鎮宇 (2006) 利用LEAFY基因序列探討台臺灣玉山杜鵑複合群的起源及演化。中國文化大學生物科技研究所碩士論文。 顏江河 (2011) 第三章、雪山地區主要林型菌根共生關係之研究,第3-1頁-第3-27頁。歐辰雄、呂金誠 (2011)雪山地區高山生態系長期監測與研究。雪霸國家公園管理處委託研究報告。 魏國彥、許晃雄 (1997) 全球環境變遷導論。臺灣大學全球變遷中心。378頁。 魏聰輝、林博雄 (2011) 第一章、高山微氣象與熱量收之研究,第1-1頁-第1-133頁。歐辰雄、呂金誠 (2011)雪山地區高山生態系長期監測與研究。雪霸國家公園管理處委託研究報告。 Bergman, P., U. Molau and B. Holmgren (1996) Micrometeorological impacts on insect activity and plant reproductive success in an alpine environment, Swedish Lapland. Arctic and Alpine Research 28(2): 196-202. Brown, D. S. (1953) Climate in relation to deciduous fruit production in California. VI. The apparent efficiencies of different temperatures for the development of apricot fruit. American Society for Horticultural Science 62: 173-183. Cannell, M. G. R. and R. I. Smith (1983) Thermal time, chill days and prediction of budburst in Picea sitchensis. Journal of Applied Ecology 20: 951-963. Chuine, I., P. Cour and D. D. Rousseau (1999) Selecting models to predict the timing of flowering of temperate tree: implications for tree phenology modeling. Plant, Cell & Environment 22:1-13. Cleary B. D. and R. H. Waring (1969) Temperature: collection of data and its analysis for the interpretation of plant growth and distribution. Canadian Journal of Botany 47(1): 167-173. Fisher P. R., J. H. Leith and R. D. Heins (1996) Modeling flower bud elongation in Easter lily (Lilium longiflorum Thumb.) in response to temperature. Hortscience 31:349-352. Gime’nez-Benavides, L., R. Garcı’a-Camacho, J. Marı’a Iriondo and A. Escudero (2011) Selection on flowering time in Mediterranean high-mountain plants under global warming. Evolutionary Ecology 25: 777-794. Gordon, R. and A. Bootsma (1993) Analyses of growing degree-days for agriculture in Atlantic Canada. Climate Research 3: 169-176. Green, K. (2010) Alpine taxa exhibit differing responses to climate warming in the Snowy Mountains of Australia. Journal of Mountain Science 7(1): 167-175. Hannerz, M (1999) Evaluation of temperature models for predicting bud burst in Norway spruce. Canadian Journal of Forest Research 29: 9-19. Heinrich, B. (1976) Resource partitioning among some eusocial insect: Bumblebees. Ecology 57: 874-889. Hsieh, C. F. (1978) Pyrolaceae. In edited by editorial committee of the flora of Taiwan. Flora of Taiwan 4: 3-14. Huelber, K., M. Gottfried, H. Pauli , K.Reiter, M. Winkler and G. Grabherr(2006) Phenological responses of snowbed species to snow removal dates in the Central Alps: Implications for climate warming. Arctic Antarctic and Alpine Research 38: 99-103. Inouye, D. W. (2008) Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology 89(2): 353-362 Inouye, D. W., F. Saavedra and L. Y. Wendy (2003) Environmental influences on the phenology and abundance of flowering by Androsace septentrionalis (Primulaceae). American Journal of Botany 90(6): 905-910. IPCC (2007) Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. 104pp. Irving, E. and R. J. Hebda (1993) Concerning the origin and distribution of Rhododendrons. Journal of the American Rhododendron Society, Summer 47(3): 139-162. Korner, C (2007) The use of ‘altitude’ in ecological research. Trends in Ecology and Evolution 22(11): 569-574. Korner, C. (2003) Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. 2nded. Springer-Verlag Berlin Heidelberg. pp 344. Krajick, K. (2004) All downhill from here? Science 303: 1600-1602. Lee, B. J., M. K. Won, T. Y. Choi, E. S. Yang and J. S. Lee (2005) Artificial light sources affect flower initiation of chrysanthemum in relation to phytochrome photoequilibrium.Journal of the Korean Society for Horticultural Science 46(2): 153-160. Li, H. L., S. Y. Lu, Y. P. Yang and Y. H. Tseng (1998) Ericaceae. In edited by editorial committee of the flora of Taiwan, Flora of TaiwanⅡ 4: 17-39. Makrodimos, N., G. J. Blionis, N. Krigas and D. Vokou (2008) Flower morphology, phenology and visitor patterns in an alpine community on Mt. Olympos, Greece. Flora-Morphology, Distribution, Functional Ecology of Plants203: 449-468. Menzel, A. (2002) Phenology: its importance to the global change community. Climate Change 54: 379-385. Menzel, A., T.H. Sparks, N. Estrella, E. Koch, A. Aasa, R. Ahas, K. Alm-Kubler, P. Bissolli, O. Braslavska, A. Briede, F. M. Chmielewski, Z. Crepinsek, Y. Curnel, A. Dahl, C. Defila, A. Donnelly, Y. Filella, K. Jatczak, F. Mage, A. Mestre, O. Nordli, J. Penuelas, P. Pirinen, V. Remisova, H. Scheifinger, M. Striz, A. Susnik, A. J. H. V. Vliet, F.E. Wielgolaski, S. Zach and A. Zust (2006) European phenological response to climate change matches the warming pattern. Global Change Biology 12: 1969-1976. Miller-Rushing, A. J. and B. P. Richard (2008) Global warming and flowering times in Thoreau''s Concord: a community perspective. Ecology 89(2): 332-341. Murray, M. B., M. G. R. Cannel and R. I. Smith (1989) Date of budburst of fifteen tree species in Britain following climatic warming. Journal of Applied Ecology 26: 693-700. Myneni, R. B., C. D. Keeling, C. J. Tucker, G.Asrar and R. R.Nemani (1997) Increased plant growth in the northern high latitudes from 1981-1991. Nature 386: 698-702. Osada N., S. Sugiura, K. Kawamura, M. Cho and H. Takeda (2003) Community-level flowering phenology and fruit set: Comparative study of 25 woody species in a secondary forest in Japan. Ecological Research 18(6): 711-723. Parmesan, C. (2006) Ecological and evolutionary responses to recent climate change. Ecology, Evolution, and Systematics 37: 637-669. Pickering, C. C. (1995) Variation in flowering parameters within and among five species of Australian alpine Ranunculus. Australian Journal of Botany 43(1) 103-112. Rossi, S., A. Deslauriers, T. Anfodillo and V. Carraro. (2007) Evidence of threshold temperatures for xylogenesis in conifers at high altitudes.Oecologia 152: 1–12. Rotzer, T., M.Wittenzeller, H. Haeckel and J. Nekovar (2000) Phenology in Central Europe-differences and trends of spring phenophases in urban and rural areas. International Journal of Biometeorology 44: 60-66. Sala, O. E., F. S. Chapin III, J. J. Armesto, R. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L. F. Huenneke, R. B. Jackson, A. Kinzig, R. Leemans, D. Lodge, H. A. Mooney, M. Oesterheld, N. L. Poff, M. T. Sykes, B. H. Walker, M. Walker, D. H. Wall (2000) Global biodiversity scenarios for the year 2100. Science 287: 1770-1774. Spano D, C. Cesaraccio, P. Duce, R. L. Snyder (1999) Phenological stages of natural species and their use as climate indicators. InternationalJournal of Biometeorology 42: 124-133 Su, H. J. (1984) Studies on the climate and vegetation types of the natural forests in Taiwan (I): analysis of the variations in climatic factors. Quarterly Journal of Chinese Forestry 17: 1-14. Swartz, H. J.and L. E. Powell (1981) The effect of long chilling requirement on time of bud break inapple. Acta Horticulturae 120: 173-178. Thorhallsdottir, T. E. (1998) Flowering phenology in the central highland of Iceland and implications for climatic warming in the Arctic. Oecologia 114: 43-49. Wang, J. C., C. H. Chen and C. T. Lu (2009) Flora of Taiwan-Gentianaceae. National Taiwan Normal University. 109pp. Waser, N. M. (1978) Competition for hummingbird pollination and sequential flowering in two Colorado wildflowers. Ecology 59(5): 934-944. Yang, Y. and H. Sun (2009) The bracts of Saussurea velutina (Asteraceae) protect inflorescences from fluctuating weather at high elevations of the Hengduan Mountains, southwestern China. Arctic, Antarctic, and Alpine Research 41: 515-521. Zhang, L., R. Turkington and Y. Tang (2010) Flowering and fruiting phenology of 24 plant species on the north slope of Mt. Qomolangma (Mt. Everest). Journal of Mountain Science 7(1): 45-54. | 摘要: | 高山生態系在全球氣候變遷下是面臨威脅最嚴重的生態系之一,而植物物候變化反應了氣候變化的綜合結果,也是植物適應氣候變化的過程,是最容易觀測和理想的重要感應器;因此,透過植物物候長期觀察可以監測氣候的變化。本研究主要針對雪山地區3,000 m以上蟲媒花之高山植物進行物候調查,建立高山植物物候學基礎資料,進行之環境因子與物候現象之分析,並探討全球氣候變遷下對高山植物物候與繁殖之影響。研究結果顯示,雪山主東峰線植物開花物候約在2月底開始,11月中旬結束,5-8月為蟲媒花植物開花物候之高峰期;同種植物愈往高海拔有愈晚開花的趨勢,而較高海拔之植物亦有較晚開花的趨勢。因海拔是間接因子,其反映在溫度的變化,推測較高海拔溫度較低且熱量不足,致使該區之開花物候較晚。其中,玉山櫻草等對溫度變化敏感之植物,可作為氣候變遷指標植物之一。玉山杜鵑是臺灣分布海拔最高的木本植物之一,花大而豔麗,是非常適宜作為長期物候觀測比較的植物。2010及2011年玉山杜鵑的物候與生育地各項因子分析結果顯示,海拔是影響最大的環境因子,海拔、光環境與坡向等3個環境因子間交互作用不顯著,而3因子皆與溫度有關,反映出溫度對玉山杜鵑的物候影響很大。隨海拔上升,展葉期、始花期和終花期明顯隨著遞延,花前累積時數、花前累積熱量、每花序花朵數(2010年)和每枝條新葉數顯著減少。在森林、林緣、草生灌叢等3種不同光環境下,玉山杜鵑之每花序花朵數、每枝條新葉數、始花期和終花期等均呈現顯著差異。玉山杜鵑的物候反應在不同方向坡向雖然差異不顯著,但生長在西北方向的植株通常較晚開花。玉山杜鵑地徑與各項物候現象無顯著相關。比較玉山杜鵑不同年度的開花物候發現,2010年的始花期較2011年早約4-33天,且2年度間的差異隨著海拔升高有縮小之趨勢;此可能反映出2010年1-5月平均溫度較2011年高,致使熱量累積較高所致。再者,雪山地區2010年玉山杜鵑在無論是單株或族群的開花皆較2011年來得茂盛,並且在2012年再度繁盛,可能反映出玉山杜鵑開花物候的豐欠年。研究結果推測,未來若持續暖化,玉山杜鵑在高海拔者較能適應,而較低海拔者則漸漸退縮。 Alpine ecosystems are one of the most severely threatened ecosystems under global climate change. Changes in plant phenology reflect the cumulative effects of climate change, show the subsequent process of plant adaptation, and are an important and ideal indicator that is easy to observe. Therefore, longitudinal observations of plant phenology can monitor climate changes. This study primarily conducted phenological surveys on alpine plants above 3,000 m with entomophilous flowers in the Mt. Xue. These surveys established basic alpine plant phenological data to conduct analyses on the relationship between phenological phenomena and environmental factors. The effects of global climate change on the phenology and reproduction of alpine plants was also studied. Study results indicated that the flowering phenology of plants along the East Xue Trail on Mt. Xue begins approximately at end of February and concludes in mid-November. The peak period of the flowering phenology for entomophilous flower plants was from May to August. The same species of plants tended to flower later as they take root in higher altitudes. In addition, plants in higher altitudes generally showed a trend of later flowering. Because altitude is an indirect factor that is reflected in temperature change, it is inferred that the temperature at higher altitudes was reduced and insufficient, which led to the later flowering phenology in the area. Plant species that are sensitive to temperature changes, such as Yushan Cowsli (Primula miyabeana), can be used as indicator species for climate change. The Yushan Azalea (Rhododendron pseudochrysanthus) is one of the highest altitude growing woody plants in Taiwan. It has large and colorful flowers, and is well-suited for long term phenological observations and comparisons. The results from an analysis on the factors in phenology and sites of reproduction of the Yushan Azalea in from the years 2010 and 2011 showed that altitude is the most influential environmental factor. The interaction among the three factors of altitude, lighting environment, and slope direction were insignificant. All three factors are related to temperature, reflecting the strong influence of temperature on the phenology of the Yushan Azalea. Along with increases in altitude, the leaf expansion period, first flowering date, and last flowering date were significantly delayed. The cumulative hours before flowering, cumulative heat-value before flowering, number of flowers per inflorescence (2010), and number of leaves per branch all decreased significantly. Under the three differing lighting environments of the interior, edge, and shrubbery regions of a forest, the number of flowers per inflorescence, number of new leaves per branch, first flowering date, and last flowering date all demonstrated significant differences. Although the phenological reaction of the Yushan Azalea to different slope directions was not significant, plants that grew facing northwest typically flowered later. The trunk base diameter of the Yushan Azalea and the various phenological phenomena were not significantly correlated. Comparing the flowering phenology of the Yushan Azalea for different years showed that the first flowering date in 2010 was between four and thirty-three days earlier than in 2011. The difference between the two years decreased with when the altitude increased. This may reflect the higher average temperature from January to May in 2010 than in 2011, which led to more accumulated heat. In addition, regardless of whether there was a single plant or a cluster of plants, the Yushan Azalea in the Mt. Xue area flowered more extensively in 2010 than in 2011, and again flowered abundantly in 2012. This may reflect the abundant and lean years in terms of the flowering phenology of the Yushan Azalea. The results of the study indicated that if global warming continues in the future, it would be easier for Yushan Azalea plants in higher altitudes to adapt to these changes, whereas the range of the plants in lower altitudes would gradually shrink. |
URI: | http://hdl.handle.net/11455/66232 | 其他識別: | U0005-2108201215071300 |
Appears in Collections: | 森林學系 |
Show full item record
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.