Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/66236
標題: 熱處理對木材及木材再生塑膠複合材物理及機械性質之影響
Effect of heat treatment on physical and mechanical properties of wood and recycled wood-plastic composite
作者: 錢易琦
Chien, Yi-Chi
關鍵字: 熱處理;Heat treatment;木材塑膠複合材;阿瑞尼斯方程式;活化能;界面性質;Wood plastic composite;Arrhenius equation;Activation energy;Interfacial interaction
出版社: 森林學系所
引用: 林曉洪、林盈宏(2011)熱處理木材之性質。林業研究季刊 33(1):91–108。 Akgül, M., E. Gümüskaya and S. Korkut (2007) Crystalline structure of heat-treated Scors pine [Pinus sylvestris L.] and Uludağ fir [Abies nordmanniana (Stev.) subsp. Bornmuelleriana (Mattf.)] wood. Wood Sci. Technol. 41:281–289. Bekhta, P. and P. Niemz (2003) Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung 57:539–546. Bhuiyan, M. T. R. and N. H. N. Sobue (2000) Changes of crystallinity in wood cellulose by heat treatment under dried and moist condition. J. Wood Sci. 46:431–436. Boonstra, M. J. and B. Tjeerdsma (2006) Chemical analysis of heat treated softwoods. Eur. J. Wood Wood Prod. 64:204–211. Brebu, M. and C. Vasile (2010) Thermal degradation of lignin–a review. Cell. Chem. Technol. 44:454–363. Brischke, C., C. R. Welzbacher, K. Brandt and A. O. Rapp (2007) Quality control of thermally modified timber: Interrelationship between heat treatment intensities and CIE L*a*b* color data on homogenized wood samples. Holzforschung 61:19–22. Brosse, N., R. E. Hage, M. Chaouch, M. Pétrissans, S. Dumarçay and P. Gérardin (2010) Investigation of the chemical modifications of beech wood lignin during heat treatment. Polym. Degrad. Stabil. 95:1721–1726. Chaouch, M., M. Pétrissans, A. Pétrissans and P. Gérardin (2010) Use of wood elemental composition to predict heat treatment intensity and decay resistance of different softwood and hardwood species. Polym. Degrad. Stabil. 95:2255–2259. Chen, H., C. Ferrari, M. Angiuli, J. Yao, C. Raspi and E. Bramanti (2010) Qualitative and quantitative analysis of wood samples by Fourier transform infrared spectroscopy and multivariate analysis. Carbohyd. Polym. 82:771–778. Dalvaeg, D., C. Klason and H. E. Stromvall (1985) The efficiency of cellulosic fillers in common thermoplastics. II. Filling with processing aids and coupling agents. Intern. J. Polym. Mater. 11:9–38. Deka, M., C. N. Saikia and K. K. Baruah (2002) Studies on thermal degradation and termite resistant properties of chemically modified wood. Bioresourse Technol. 84:151–157. Dubey, M. K., S. Pang and J. Walker (2011) Effect of oil heating age on colour and dimensional stability of heat treated Pinus radiata. Eur. J. Wood Wood Prod. 69:255–262. Esteves, B. M. and H. M. Pereira (2009) Wood modification by heat treatment: review. Bioresources 4:370–404. Esteves, B. M., A. V. Marques, I. Domingos and H. Pereira (2007) Influence of steam heating on the properties of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Sci. Technol. 41:193–207. Esteves, B. M., I. J. Domingos and H. M. Pereira (2008a) Pine wood modifications by heat treatment in air. Bioresources 3:142–154. Esteves, B., A. V. Marques, I. Domingos and H. Pereira (2008b) Heat-induced colour changes of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Sci. Technol. 42:369–384. González-Peña, M. M., S. F. Curling and M. D.C. Hale (2009) On the effect of heat on the chemical composition and dimensions of thermally-modified wood. Polym. Degrad. Stabil. 94:2184–2193. Gündüz, G., S. Korkut and D. S. Korkut (2008) The effect of heat treatment on physical and technological properties and surface roughness of Camiyani Black Pine (Pinus nigra Arn. subsp. pallasiana var. pallasiana) wood. Bioresourse Technol. 99:2275–2280. Hakkou, M., M. Pétrissans., A. Zoulalian and P. Gérardin (2005) Investigation of wood wettability changes during heat treatment on the basis of chemical analysis. Polym. Degrad. Stabil. 89:1–5. Hall, A. H. (2002) Chronic arsenic poisoning. Toxicol. Lett. 128:69–72. Hill, C. A. S. (2006) Wood Modification–Chemical, Thermal and other Processes. John Wiley & Sons, Chichester, UK, pp.100–127. Homan, W. J. and A. J. M. Jorissen (2004) Wood modification development. Heron 49:361–386. Hori, R. and J. Sugiyama (2003) A combined FT-IR microscopy and principal component analysis on softwood cell walls. Carbohydrd. Polym. 52:449–453. Inari, G. N., S. Mounguengui, S. Dumarçay, M. Pétrissans and P. Gérardin (2007) Evidence of char formation during wood heat treatment by mild pyrolysis. Polym. Degrad. Stabil. 92:997–1002. Jebrane, M. and G. Sèbe (2007) A novel simple route to wood acetylation by transesterification with vinyl acetate. Holzforschung 61:143–147. Jebrane, M., F. Pichavant and G. Sèbe (2011) A comparative study on the acetylation of wood by reaction with vinyl acetate and acetic anhydride. Carbohyd. Polym. 83:339–345. Kamdem, D. P., A. Pizzi and A. Jermannaud (2002) Durability of heat-treated wood. Eur. J. Wood Wood Prod. 60:1–6. Katz, S. A. and H. Salem (2005) Chemistry and toxicology of building timbers pressure-treated with chromate copper arsenate: a review. J. Appl. Toxicol. 25:1–7. Kocaefe, D., S. Poncsak, J. Tang and M. Bouazara (2009) Effect of heat treatment on the mechanical properties of North American jack pine: thermogravimetric study. J. Mater. Sci. 45:681–687. Korkut, S. and B. Guller (2008) The effects of heat treatment on physical properties and surface roughness of Red-bud maple (Acer trautvetteri Medw.) wood. Bioresourse Technol. 99:2846–2851. Korkut, S., M. S. Kök, D. S. Korkut and T. Gürleyen (2008) The effects of heat treatment on technological properties in Red-bud maple (Acer trautvetteri Medw.) wood. Bioresourse Technol. 99:1538–1543. Kudanga, T., G. S. Nyanhongob, G. M. Guebitzb and S. Burtona (2011) Potential applications of laccase-mediated coupling and grafting reactions: A review. Enzyme Microb. Tech. 48:195–208. Kudanga,T., E. N. Prasetyo, P. Widsten, A. Kandelbauer, S. Jury, C. Heathcote, J. Sipilä , H. Weber, G. S. Nyanhongo and G. M. Guebitz (2010) Laccase catalyzed covalent coupling of fluorophenols increases lignocellulose surface hydrophobicity. Bioresourse Technol. 101:2793–2799. Maldas, D. and B. V. Kokta (1990) Influence of phthalic anhydride as a coupling agent on the mechanical behavior of wood fiber-polystyrene composites. J. Appl. Polym. Sci. 41:185–194. Maldas, D., B. V. Kokta and C. Daneault (1989) Influence of coupling agents and treatments on the mechanical properties of cellulose fiber-polystyrene composites. J. Appl. Polym. Sci. 37:751–775. Martínez, Á. T., M. Speranza, F., J. Ruiz-Dueñas, P. Ferreira, S. Camarero, F. Guillén, M. J. Martínez, A. Gutiérrez and J. C. del Río (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int. Microbiol. 8:195–204. Matsuo, M., M.Yokoyama, K.Umemura, J.Gril, K. Yano and S. Kawai (2010) Color changes in wood during heating: kinetic analysis by applying a time-temperature superposition method. Appl. Phys. A-Mater. 99:47–52. Mburu, F., S. Dumarçay, F. Huber, M. Petrissans and P. Gérardin (2007) Evaluation of thermally modified Grevillea robusta heartwood as an alternative to shortage of wood resource in Kenya: Characterisation of physicochemical properties and improvement of bio-resistance. Polym. Degrad. Stabil. 98:3478–3486. Mitsui, K., H. Takada, M. Sugiyama and R. Hasegawa (2001) Changes in the properties of light-irradiated wood with heat treatment. Part 1. Effect of treatment conditions on the change in color. Holzforschung 55:601–605. Mohanty, S., S. K. Verma and S. K. Nayak (2006) Dynamic mechanical and thermal properties of MAPE treated jute/HDPE composites. Compos. Sci. Technol. 66:538–547. Nuopponen, M., T. Vuorinen, S, Jämsä and P. Viitaniemi (2004) Thermal modifications in softwood studied by FT-IR and UV resonance Raman spectroscopies. J. Wood Chem. Technol. 24:13–26. Prakash, G. K. and K. M. Mahadevan (2008) Enhancing the properties of wood through chemical modification with palmitoyl chloride. Appl. Surf. Sci. 254:1751–1756. Pasquini, D., E. M. Teixeira, A. A. S. Curvelo, M. N. Belgacem and A. Dufresne (2008) Surface esterification of cellulose fibres: Processing and characterization of low-density polyethylene/cellulose fibres composites. Compos. Sci. Technol. 68:193–201. Raj, R. G., B. V. Kokta, F. Dembele and B. Sanschagrain (1989) Compounding of cellulose fibers with polypropylene: Effect of fiber treatment on dispersion in the polymer matrix. J. Appl. Polym. Sci. 38:1987–1996. Rana, R., R. L. Heyser, R. Finkeldey and A. Polle (2010) FTIR spectroscopy, chemical and histochemical characterisation of wood and lignin of five tropical timber wood species of the family of Dipterocarpaceae. Wood Sci. Technol. 44:225–242. Rowell, R. M. (1986) Vapor phase acetylation of southern pine, douglas-fir and aspen wood flakes. J. Wood Chem. Technol. 6:293–309. Šernek, M., F. A. Kamke and W. G. Glasser (2004) Comparative analysis of inactivated wood surface. Holzforschung 58:22–31. Shen, D. K., S. Gu and A.V. Bridgwater (2010) Study on the pyrolytic behaviour of xylan-based hemicellulose using TG–FTIR and Py–GC–FTIR. J. Anal. Appl. Pyrol. 87:199–206. Shi, J. L., D. Kocaefe, T. Amburgey and J. Zhang (2007) A comparative study on brown-rot fungus decay and subterranean termite resistance of thermally-modified and ACQ-C-treatedwood. Eur. J. Wood Wood Prod. 65:353–358. Singh, R., S. Singh, K. D. Trimukhe, K. V. Pandare, K. B. Bastawade, D. V. Gokhale and A. J. Varma (2005) Lignin–carbohydrate complexes from sugarcane bagasse: Preparation, purification, and characterization. Carbohyd. Polym. 62:57–66. Sinha, A., J. A. Nairn and R. Gupta (2011) Thermal degradation of bending strength of plywood and oriented strand board: a kinetics approach. Wood Sci. Technol. 45:315–330. Sivonen, H., S. Maunu, F. Sundholm, S. Jämsä and P. Viitaniemi (2002) Magnetic resonance studies of thermally modified wood. Holzforschung 56:648–654. Stamm, A. J. and L. A. Hansen (1937) Minimizing wood shrinkage and swelling: Effect of heating in various gases. Ind. Eng. Chem. 29:831–833. Sundqvist, B. (2004) Colour changes and acid formation in wood during heating. Doctor Thesis, Lulea University of Technology. Sundqvist, B. and T. Morén (2002) The influence of wood polymers and extractives on wood colour induced by hydrothermal treatment. Eur. J. Wood Wood Prod. 60:375–376. Tamrakar, S., R. A. Lopez-Anido, A. Kiziltas and D. J. Gardner (2011) Time and temperature dependent response of a wood-polypropylene composite. Compos Part A-Appl S. 42:834–842. ThermoWood® Handbook (2003) Finnish, Finnish ThermoWood Association. Tjeerdsma, B. F. and H. Militz (2005) Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Eur. J. Wood Wood Prod. 63:102–111. Tjeerdsma, B., M. Boonstra, A. Pizzi, P. Tekely and H. Militz (1998) Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Eur. J. Wood Wood Prod. 56:149–153. Unsal, O. and N. Ayrilmis (2005) Variations in compression strength and surface roughness of heat-treated Turkish river red gum (Eucalyptus camaldulensis) wood. J. Wood Sci. 51:405–409. Wang, J. Y. and P. A. Cooper (2005) Effect of oil type, temperature and time on moisture properties of hot oil-treated wood. Eur. J. Wood Wood Prod. 63:417–422. Weiland, J. J. and R. Guyonnet (2003) Study of chemical modifications and fungi degradation of thermally modified wood using DRIFT spectroscopy. Eur. J. Wood Wood Prod. 61:216–220. Widstena, P., C. Heathcote, A. Kandelbauer, G. Guebitz, G. S. Nyanhongo, E. N. Prasetyo and T. Kudanga (2010) Enzymatic surface functionalisation of lignocellulosic materials with tannins for enhancing antibacterial properties. Process Biochem. 45:1072–1081. Wikberg H. and S. L. Maunu (2004) Characterisation of thermally modified hard- and softwoods by 13C CPMAS NMR. Carbohyd. Polym. 58:461–466. Windeisen, E., H. Bächle, B. Zimmer and G. Wegener (2009) Relations between chemical changes and mechanical properties of thermally treated wood. Holzforschung 63:773–778. Wong, E. D., M. Zhang, Q. Wang and S. Kawai (1999) Formation of the density profile and its effects on the properties of particleboard. Wood Sci. Technol. 33:327–340. Yao, C., F. Yongming, G. Jianmin and L. Houkun (2012) Coloring characteristics of in situ lignin during heat treatment. Wood Sci. Technol. 46:33–40.
摘要: 
本研究係利用不同溫度(120–260oC)、環境(空氣及氮氣)及持溫時間(2h)對柳杉(Cryptomeria japonica)及山毛櫸(Fagus sylvatica)進行熱處理,並將熱處理後之木粒片與回收型高密度聚乙烯(Recycled high density polyethylene,rHDPE)製備成木材塑膠再生複合材(Wood plastic recycled composite,WPC),同時,利用萬能強度試驗機、動態機械分析儀、全反射式傅立葉紅外線光譜儀、X-ray繞射儀、固態核磁共振儀、色差計等儀器,探討熱處理對木材及木材塑膠複合材物理機械及熱性質之影響。試驗結果顯示,木材之質量損失率及尺寸收縮率隨著熱處理溫度之提高而增加。另外,經由浸水試驗結果亦得知,熱處理後之木材具有較高之疏水性及尺寸安定性。至於機械性質方面,於空氣環境下,當熱處理溫度超過200oC時,試材之抗彎強度則有顯著性的下降;而當熱處理溫度達260oC時,試材之抗彎性質最差。而在木材表面性質方面,經過熱處理後之木材表面顏色變深,且呈現較平滑之表面。另一方面,試材經過熱處理後,會因其非結晶區中多醣類成分的降解,而增加試材結晶度,同時,由NMR試驗結果得知,木質素會發生熱交聯及熱縮合反應。此外,試驗結果亦發現,全反射式傅立葉轉換紅外線光譜儀(Attenuated total reflectance–Fourier transforminfrared spectroscopy,ATR–FTIR)結合主成分分析(Principle component analysis,PCA),能有效區分不同程度之柳杉熱處理材。
由動態機械分析儀試驗結果亦得知,試材之儲存模數(Storage modulus,E’)與熱處理溫度具關聯性。以山毛櫸為例,於氮氣環境下,當熱處理溫度低於160oC時,儲存模數損失率(Decrease rate of storage modulus,E’D)之自然對數值(ln E’D)與熱處理之絕對溫度的倒數(1/K)間並無顯著相關性;然當溫度超過160oC後,二者之間則呈一線性相關(R2 = 0.995)。而進一步經由阿瑞尼斯方程式(Arrhenius equation)計算後得知,山毛櫸於有氧環境下之熱降解活化能(141.3 kJ/mol)明顯低於氮氣環境者(150 kJ/mol)。
另一方面,以熱處理木粒片所製備之木材塑膠複合材,其吸水率及吸水厚度膨脹率隨處理溫度提高而降低,而抗彎性質及木螺釘保持力則與對照組間無顯著差異。至於內聚強度方面,當熱處理溫度為120oC時,即能有效提升複合材之內聚強度,由未處理之1.5 MPa提高至2.0 MPa。顯示,木粒片透過熱處理後,確實能有效提高木粒片與塑膠相容性以及二者間之界面性質。

In this study, Cryptomeria japonica (Sugi) and Fagus sylvatica (Beech) were heat treated during 2h by different temperatures (120–260oC) and gas atmosphere (air and nitrogen), and then heat treated particles and recycled high density polyethylene (rHDPE) were used as raw materials to manufacture wood-plastic composites (WPC). Effects of heat treatment on physicomechanical and thermal-properties of woods and WPC were evaluated by universal testing machine, dynamic mechanical analyzer, attenuated total refletcion–Fourier transform infrared spectroscopy (ATR–FTIR), X–ray diffractometer, 13C CP/MAS nuclear magnetic resonance spectrometer (13C CP/MAS NMR), and color difference meter. These results showed that the mass loss and dimensional shrinkage percentage of heat treated woods increased with increasing treated temperatures. As the results of soaking test, woods exhibited better dimensional stability and hydrophobic properties during heat treatment. As for mechanical properties, the modulus of rupture (MOR) of wood had significant decreased when heat treatment was performed at temperature exceed 200oC under air atmosphere. And then, the flexural properties of wood exhibited the worst at 260oC. For surface properties, the color of wood became darker during heat treatment, and the surface of heat treated wood was smoother. On the other hand, the crystallinity of heated wood increased due to the polysaccharides of amorphous region were degraded. In addition, lignin occurred thermal condensation and thermal cross-linking reaction at the same time according to NMR analysis. Furthermore, in this study, the combinations of ATR–FTIR and principle component analysis (PCA) is succeeded to discriminate different degrees of heat treated Sugi.
Results from dynamic mechanical analyzer revealed that there was a high correlation between the storage modulus (E’) and treated temperatures. As an example of beech wood, there is no significant correlation between the natural log of decrease rate of storage modulus (E’D) and reciprocal absolute temperature when the heat treatment was performed at temperature below 160oC under a nitrogen atmosphere. However, a linear correlation between ln E’D and 1/K was observed (R2 = 0.995) when the temperature exceeded 160oC. Moreover, according to Arrhenius equation, the activation energy of beech wood under an air atmosphere was calculated as 141.3 kJ/mol which was lower than that of wood under a nitrogen atmosphere (150 kJ/mol).
Results also showed that the water absorption and thickness swelling of WPC made by heat treated particles decreased with increasing treated temperature. Furthermore, the flexural properties and wood screw-holding strength of WPC had no significant difference between untreated and heat treated ones. However, internal bond strength of WPC were significantly increased after heat treatment, even though the treated temperature was 120oC, the internal bond strength of untreated and heat treated WPC were 1.5 MPa and 2.0 MPa, respectively. Accordingly, the result indicates that the compatibility and interfacial interaction between the wood particles and the polymeric matrix could be improved by heat treated process.
URI: http://hdl.handle.net/11455/66236
其他識別: U0005-2408201213160700
Appears in Collections:森林學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.