Please use this identifier to cite or link to this item:
標題: 台灣中南部屠宰場本土牛隻屠體受病原性大腸桿菌汙染之情況分析
Assessment of Enterovirulent Escherichia coli Contamination of Domasty Cattle Carcasses in Central and Southern Taiwan
作者: 吳迎晨
Wu, Yi-Chin
關鍵字: Cattle;屠宰場;Carcasses;Escherichia coli;大腸桿菌;牛
出版社: 微生物暨公共衛生學研究所
引用: 行政院衛生署食品藥物管理局 (2010a). 食物中毒統計資料. 行政院衛生署食品藥物管理局 (2010b). 細菌性食物中毒. 吳芳姿、王明琴、陳豪勇 (2005年10月25日). 台灣地區腹瀉型病原性大腸桿菌流行概況分析. 行政院衛生署疾病管制局 研究檢驗中心. 李秀,賴滋漢 (1992). 食品分析與檢驗. 富林出版社, 313. 李裕銘 (2005). 影響猪屠體品質之微生物調查分析. 國立中興大學獸醫公共衛生學研究所. 台中. 經濟部標準檢驗局, CNS10890 A W Paton, J.C.P., P N Goldwater, and P A Manning (1993). Direct detection of Escherichia coli Shiga-like toxin genes in primary fecal cultures by polymerase chain reaction. J Clin Microbiol 31(11), 3063-3067. Aarestrup, F.M. (1999). Association between the consumption of antimicrobial agents in animal husbandry and the occurrence of resistant bacteria among food animals. Int J Antimicrob Agents 12, 279-285. Ammon, A. (1997). Surveillance of enterohaemorrhagic E. coli (EHEC) infections and haemolytic uraemic syndrome (HUS) in Europe. Euro Surveill 2, 91-96. Arthur, T.M., Bosilevac, J.M., Nou, X., Shackelford, S.D., Wheeler, T.L., Kent, M.P., Jaroni, D., Pauling, B., Allen, D.M., and Koohmaraie, M. (2004). Escherichia coli O157 prevalence and enumeration of aerobic bacteria, Enterobacteriaceae, and Escherichia coli O157 at various steps in commercial beef processing plants. J Food Prot 67, 658-665. Avery, S.M., Small, A., Reid, C.A., and Buncic, S. (2002). Pulsed-field gel electrophoresis characterization of Shiga toxin-producing Escherichia coli O157 from hides of cattle at slaughter. J Food Prot 65, 1172-1176. Ayres, J.C. (1955). Microbiological Implications in the Handling, Slaughtering, and Dressing of Meat Animals. In Advances in Food Research, E.M. Mrak, and G.F. Stewart, eds. (Academic Press), pp. 109-161. Baffone, W., Ciaschini, G., Pianetti, A., Brandi, G., Casaroli, A., and Bruscolini, F. (2001). Detection of Escherichia coli O157:H7 and other intestinal pathogens in patients with diarrhoeal disease. Eur J Epidemiol 17, 97-99. Barkocy-Gallagher, G.A., Arthur, T.M., Rivera-Betancourt, M., Nou, X., Shackelford, S.D., Wheeler, T.L., and Koohmaraie, M. (2003). Seasonal prevalence of Shiga toxin-producing Escherichia coli, including O157:H7 and non-O157 serotypes, and Salmonella in commercial beef processing plants. J Food Prot 66, 1978-1986. Barnes, E.M., and Impey, C.S. (1968). Psychrophilic Spoilage Bacteria of Poultry. J Appl Microbiol 31, 97-107. Benjamin, M.M., and Datta, A.R. (1995). Acid tolerance of enterohemorrhagic Escherichia coli. Appl Environ Microbiol 61, 1669-1672. Bertin, Y., Boukhors, K., Pradel, N., Livrelli, V., and Martin, C. (2001). Stx2 subtyping of Shiga toxin-producing Escherichia coli isolated from cattle in France: detection of a new Stx2 subtype and correlation with additional virulence factors. J Clin Microbiol 39, 3060-3065. Beutin, L., Zimmermann, S., and Gleier, K. (1998). Human infections with Shiga toxin-producing Escherichia coli other than serogroup O157 in Germany. Emerg Infect Dis 4, 635-639. Boerlin, P., McEwen, S.A., Boerlin-Petzold, F., Wilson, J.B., Johnson, R.P., and Gyles, C.L. (1999). Associations between virulence factors of Shiga toxin-producing Escherichia coli and disease in humans. J Clin Microbiol 37, 497-503. Bolton, D.J., Pearce, R.A., Sheridan, J.J., Blair, I.S., McDowell, D.A., and Harrington, D. (2002). Washing and chilling as critical control points in pork slaughter hazard analysis and critical control point (HACCP) systems. J Appl Microbiol 92, 893-902. Botelho, A.R., and Planta, R.J. (1994). Specific identification of Candida albicans by hybridization with oligonucleotides derived from ribosomal DNA internal spacers. Yeast 10, 709-717. Brooks, J.T., Sowers, E.G., Wells, J.G., Greene, K.D., Griffin, P.M., Hoekstra, R.M., and Strockbine, N.A. (2005). Non-O157 Shiga toxin-producing Escherichia coli infections in the United States, 1983-2002. J Infect Dis 192, 1422-1429. Brown, M. (1982). Meat Microbiology. Applied Science Publishers, Ltd. Essex, England. Brownlie, L.E., and Grau, F.H. (1967). Effect of food intake on growth and survival of salmonellas and Escherichia coli in the bovine rumen. J Gen Microbiol 46, 125-134. Buttiaux, R., Devambez, J., and Tacquet, A. (1951). Escherichia coli of the infantile gastroenteritis type in an adult with serious diarrhea. Arch Mal Appar Dig Mal Nutr 40, 1343-1346. Chapman, P.A., Ellin, M., Ashton, R., and Shafique, W. (2001). Comparison of culture, PCR and immunoassays for detecting Escherichia coli O157 following enrichment culture and immunomagnetic separation performed on naturally contaminated raw meat products. Int J Food Microbiol 68, 11-20. Charlebois R. , T.R., and Messier S. (1991). Surface contamination of beef carcasses by fecal coliforms. J Food Prot 54, 950-956. Chopra, I., and Roberts, M. (2001). Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65, 232-260. Cleary, T.G., Mathewson, J.J., Faris, E., and Pickering, L.K. (1985). Shiga-like cytotoxin production by enteropathogenic Escherichia coli serogroups. Infect Immun 47, 335-337. Clinical and Laboratory Standards Institutes; CLSI 2010, M100 – S20 Cohen, M.B., Nataro, J.P., Bernstein, D.I., Hawkins, J., Roberts, N., and Staat, M.A. (2005). Prevalence of diarrheagenic Escherichia coli in acute childhood enteritis: a prospective controlled study. J Pediatr 146, 54-61. Dekoninck, A., Blaton, B., Lontie, M., and Verhaegen, J. (1998). Prevalence of Escherichia coli O157:H7. Acta Clin Belg 53, 55-56. Deng, M.Y.F., Pina M. (1996). A multiplex PCR for rapid identification of shiga-like toxin-producing Escherichia coli O157:H7 Isolated from Foods. J Food Protect 59, 570-576. Donnenberg, M.S., Giron, J.A., Nataro, J.P., and Kaper, J.B. (1992). A plasmid-encoded type IV fimbrial gene of enteropathogenic Escherichia coli associated with localized adherence. Mol Microbiol 6, 3427-3437. Dontorou, C., Papadopoulou, C., Filioussis, G., Economou, V., Apostolou, I., Zakkas, G., Salamoura, A., Kansouzidou, A., and Levidiotou, S. (2003). Isolation of Escherichia coli O157:H7 from foods in Greece. Int J Food Microbiol 82, 273-279. DuPont, H.L., Formal, S.B., Hornick, R.B., Snyder, M.J., Libonati, J.P., Sheahan, D.G., LaBrec, E.H., and Kalas, J.P. (1971). Pathogenesis of Escherichia coli diarrhea. N Engl J Med 285, 1-9. Dytoc, M.T., Ismaili, A., Philpott, D.J., Soni, R., Brunton, J.L., and Sherman, P.M. (1994). Distinct binding properties of eaeA-negative verocytotoxin-producing Escherichia coli of serotype O113:H21. Infect Immun 62, 3494-3505. Empey WA, a.S.W. (1939). Investigations on Chilled Beef Part 1 Microbial contamination acquired in the meatworks Australia. Erdmann, J.J., Dickson, J.S., and Grant, M.A. (2002). A new technique for Escherichia coli testing of beef and pork carcasses. J Food Prot 65, 192-195. Feng, P. (1997). Impact of molecular biology on the detection of foodborne pathogens. Mole Bio 7, 267-278. Fey, P.D., Wickert, R.S., Rupp, M.E., Safranek, T.J., and Hinrichs, S.H. (2000). Prevalence of non-O157:H7 shiga toxin-producing Escherichia coli in diarrheal stool samples from Nebraska. Emerg Infect Dis 6, 530-533. Fratamico, P., Sackitey, S., Wiedmann, M., and Deng, M. (1995). Detection of Escherichia coli O157:H7 by multiplex PCR. J Clin Microbiol 33, 2188-2191. Gaastra, W., and de Graaf, F.K. (1982). Host-specific fimbrial adhesins of noninvasive enterotoxigenic Escherichia coli strains. Microbiol Rev 46, 129-161. Garber, L.P., Wells, S.J., Hancock, D.D., Doyle, M.P., Tuttle, J., Shere, J.A., and Zhao, T. (1995). Risk factors for fecal shedding of Escherichia coli O157:H7 in dairy calves. J Am Vet Med Assoc 207, 46-49. Gill, C. (1982). Microbial interaction with meats. Meat Microbiology Brown, MH (Ed)Applied Science Publishers Ltd.London, 225-264. Grau, F. (1987). Prevention of microbial contamination in the export beef. In: Smulders FJM,(Ed)Elimination of pathogenic organisms from meat and poultry Amsterdam: Elsevier Press, 221–223. Gray, L. (1995). Escherichia, Salmonella, Shigella, and Yersinia. In: Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH, editors Manual of clinical microbiology 6th ed Washington, DC: American Society for Microbiology, 450-456. Guth, B.E.C., Chinen, I., Miliwebsky, E., Cerqueira, A.M.F., Chillemi, G., Andrade, J.R.C., Baschkier, A., and Rivas, M. (2003). Serotypes and Shiga toxin genotypes among Escherichia coli isolated from animals and food in Argentina and Brazil. Veterinary Microbiology 92, 335-349. Hales, B.A., Hart, C.A., Batt, R.M., and Saunders, J.R. (1992). The large plasmids found in enterohemorrhagic and enteropathogenic Escherichia coli constitute a related series of transfer-defective Inc F-IIA replicons. Plasmid 28, 183-193. Hancock, D.D., Besser, T.E., Rice, D.H., Herriott, D.E., and Tarr, P.I. (1997). A longitudinal study of Escherichia coli O157 in fourteen cattle herds. Epidemiol Infect 118, 193-195. HJ, M. (1982). How E. coli got its name. Hosp Pract, 17:58-19. Hunter, P.R. (2003). Drinking water and diarrhoeal disease due to Escherichia coli. J Water Health 1, 65-72. Hurd. (2004). The association between cleaning and disinfection of lairage pens and the prevalence of Salmonella enterica in swine at harvest. J Food Protect 67, 1384-1388. Hussein, H.S. (2007). Prevalence and pathogenicity of Shiga toxin-producing Escherichia coli in beef cattle and their products. J Anim Sci 85, E63-72. Hussein, H.S., and Bollinger, L.M. (2005). Prevalence of Shiga toxin-producing Escherichia coli in beef. Meat Sci 71, 676-689. Hussein, H.S., and Sakuma, T. (2005). Shiga toxin-producing Escherichia coli: pre- and postharvest control measures to ensure safety of dairy cattle products. J Food Prot 68, 199-207. Johnson, K.E., Thorpe, C.M., and Sears, C.L. (2006). The emerging clinical importance of non-O157 Shiga toxin-producing Escherichia coli. Clin Infect Dis 43, 1587-1595. Karpman, D., Connell, H., Svensson, M., Scheutz, F., Alm, P., and Svanborg, C. (1997). The role of lipopolysaccharide and Shiga-like toxin in a mouse model of Escherichia coli O157:H7 infection. J Infect Dis 175, 611-620. Kauffmann, F. (1947). The serology of the coli group. The Journal of Immunology 57, 1 71-100. Keskimaki, M., Saari, M., Heiskanen, T., and Siitonen, A. (1998). Shiga toxin-producing Escherichia coli in finland from 1990 through 1997: prevalence and characteristics of isolates. J Clin Microbiol 36, 3641-3646. Kim, K.H., Suh, I.S., Kim, J.M., Kim, C.W., and Cho, Y.J. (1989). Etiology of childhood diarrhea in Korea. J Clin Microbiol 27, 1192-1196. Koo, H.J., and Woo, G.J. (2011). Distribution and transferability of tetracycline resistance determinants in Escherichia coli isolated from meat and meat products. Int J Food Microbiol 145, 407-413. Lee, G.Y., Jang, H.I., Hwang, I.G., and Rhee, M.S. (2009). Prevalence and classification of pathogenic Escherichia coli isolated from fresh beef, poultry, and pork in Korea. Int J Food Microbiol 134, 196-200. Levine, M.M., Xu, J.G., Kaper, J.B., Lior, H., Prado, V., Tall, B., Nataro, J., Karch, H., and Wachsmuth, K. (1987). A DNA probe to identify enterohemorrhagic Escherichia coli of O157:H7 and other serotypes that cause hemorrhagic colitis and hemolytic uremic syndrome. J Infect Dis 156, 175-182. Lin, Y.L., Chou, C.C., and Pan, T.M. (2001). Screening procedure from cattle feces and the prevalence of Escherichia coli O157:H7 in Taiwan dairy cattle. J Microbiol Immunol Infect 34, 17-24. M Samadpour, V.B., W Marler (2009). Prevalence of non-o157 enterohaemmorrhagic Escherichia coli in retail Ground beef in the united states. Institute for Environmental Health. Ma, Y.P., Chang, S.K., and Chou, C.C. (2006). Characterization of bacterial susceptibility isolates in sixteen dairy farms in Taiwan. J Dairy Sci 89, 4573-4582. Mackey BM, a.D.C. (1979). Contamination of the deep tissues of carcasses by bacteria present on the slaughter instrument or in the gut. J Appl Bacteriol 46, 355-366. Mackey, B.M., and Derrick, C.M. (1979). Contamination of the deep tissues of carcasses by bacteria present on the slaughter instruments or in the gut. J Appl Microbiol 46, 355-366. Madico, G., Akopyants, N.S., and Berg, D.E. (1995). Arbitrarily primed PCR DNA fingerprinting of Escherichia coli O157:H7 strains by using templates from boiled cultures. J Clin Microbiol 33, 1534-1536. Marques, L.R., Moore, M.A., Wells, J.G., Wachsmuth, I.K., and O''Brien, A.D. (1986). Production of Shiga-like toxin by Escherichia coli. J Infect Dis 154, 338-341. Matthews, R.G., Cui, Y., Friedberg, D., and Calvo, J.M. (2000). Wild-type and hexahistidine-tagged derivatives of leucine-responsive regulatory protein from Escherichia coli. Methods Enzymol 324, 322-329. Maurer, J.J., Schmidt, D., Petrosko, P., Sanchez, S., Bolton, L., and Lee, M.D. (1999). Development of primers to O-antigen biosynthesis genes for specific detection of Escherichia coli O157 by PCR. Appl Environ Microbiol 65, 2954-2960. McDaniel, T.K., Jarvis, K.G., Donnenberg, M.S., and Kaper, J.B. (1995). A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc Natl Acad Sci U S A 92, 1664-1668. McMeekin TA., D.R. (1981). Microbial spoilage of meats. In developments in food microbiology. Applied science, London. Mead, G. (1989). Processing of poultry. Elsevier Applied Science Barking Essex, England, 183-320. Mead, P.S., Slutsker, L., Griffin, P.M., and Tauxe, R.V. (1999). Food-related illness and death in the united states reply to dr. hedberg. Emerg Infect Dis 5, 841-842. Meng, J., Zhao, S., Doyle, M.P., Mitchell, S.E., and Kresovich, S. (1996). Polymerase chain reaction for detecting Escherichia coli O157: H7. Int J Food Microbiol 32, 103-113. Murray, K.A., Gilmour, A., and Madden, R.H. (2001). Microbiological quality of chilled beef carcasses in Northern Ireland: a baseline survey. J Food Prot 64, 498-502. Nataro, J.P., and Kaper, J.B. (1998). Diarrheagenic Escherichia coli. Clin Microbiol Rev 11, 142-201. Nataro, J.P., Scaletsky, I.C., Kaper, J.B., Levine, M.M., and Trabulsi, L.R. (1985). Plasmid-mediated factors conferring diffuse and localized adherence of enteropathogenic Escherichia coli. Infect Immun 48, 378-383. Notermans and Schothorst M van. (1977). Suitability of different bacterial groups for determining faecal contamination during post scalding stages in the processing of broiler chickens. J Appl Bacteriol 43, 383-389. Notermans, S., Van Leusden, F.M., and Van Schothorst, M. (1977). Suitability of different bacterial groups for determining faecal contamination during post scalding stages in the processing of broiler chickens. J Appl Bacteriol 43, 383-389. Okeke, I.N., and Nataro, J.P. (2001). Enteroaggregative Escherichia coli. Lancet Infect Dis 1, 304-313. Oosterom J., N.S. (1983). urther research into the possibility of Salmonella-free fattening and slaughter of pigs. J Hyg (Lond) 91, 59-69. Oporto, B., Esteban, J.I., Aduriz, G., Juste, R.A., and Hurtado, A. (2008). Escherichia coli O157:H7 and non-O157 Shiga toxin-producing E. coli in healthy cattle, sheep and swine herds in Northern Spain. Zoonoses Public Health 55, 73-81. Paciorek, J. (2002). Virulence properties of Escherichia coli faecal strains isolated in Poland from healthy children and strains belonging to serogroups O18, O26, O44, O86, O126 and O127 isolated from children with diarrhoea. J Med Microbiol 51, 548-556. Parry, S.M., Salmon, R.L., Willshaw, G.A., and Cheasty, T. (1998). Risk factors for and prevention of sporadic infections with vero cytotoxin (shiga toxin) producing Escherichia coli O157. Lancet 351, 1019-1022. Paton, A.W., Paton, J.C., Goldwater, P.N., Heuzenroeder, M.W., and Manning, P.A. (1993). Sequence of a variant Shiga-like toxin type-I operon of Escherichia coli O111:H. Gene 129, 87-92. Paton, J.C., and Paton, A.W. (1998). Pathogenesis and diagnosis of Shiga toxin-producing Escherichia coli infections. Clin Microbiol Rev 11, 450-479. Pradel, N., Livrelli, V., De Champs, C., Palcoux, J.B., Reynaud, A., Scheutz, F., Sirot, J., Joly, B., and Forestier, C. (2000). Prevalence and characterization of Shiga toxin-producing Escherichia coli isolated from cattle, food, and children during a one-year prospective study in France. J Clin Microbiol 38, 1023-1031. Rahn, K., Renwick, S.A., Johnson, R.P., Wilson, J.B., Clarke, R.C., Alves, D., McEwen, S., Lior, H., and Spika, J. (1997). Persistence of Escherichia coli O157:H7 in dairy cattle and the dairy farm environment. Epidemiol Infect 119, 251-259. Rasmussen, M.A., Cray, W.C., Jr., Casey, T.A., and Whipp, S.C. (1993). Rumen contents as a reservoir of enterohemorrhagic Escherichia coli. Fems Microbiol Lett 114, 79-84. Rho, M.J., Chung, M.S., Lee, J.H., and Park, J. (2001). Monitoring of microbial hazards at farms, slaughterhouses, and processing lines of swine in Korea. J Food Protect 64, 1388-1391. Rice, D.H., Hancock, D.D., and Besser, T.E. (1995). Verotoxigenic E .coli O157 colonisation of wild deer and range cattle. Vet Rec 137, 524. Rigobelo, E.C., Santo, E., and Marin, J.M. (2008). Beef carcass contamination by Shiga toxin-producing Escherichia coli strains in an abattoir in Brazil: characterization and resistance to antimicrobial drugs. Foodborne Pathog Dis 5, 811-817. Rodriguez-Angeles, G. (2002). Principal characteristics and diagnosis of the pathogenic groups of Escherichia coli. Salud Publica Mex 44, 464-475. Rostagno, M.H., Hurd, H.S., McKean, J.D., Ziemer, C.J., Gailey, J.K., and Leite, R.C. (2003). Preslaughter holding environment in pork plants is highly contaminated with Salmonella enterica. Appl Environ Microbiol 69, 4489-4494. Schmidt PL, O.C.A., McKean JD, and Hurd HS (2004). The association between cleaning and disinfection of lairage pens and the prevalence of Salmonella enterica in swine at harvest. J Food Prot 67, 1384-1388. Schurman, R.D., Hariharan, H., Heaney, S.B., and Rahn, K. (2000). Prevalence and characteristics of shiga toxin-producing Escherichia coli in beef cattle slaughtered on prince Edward Island. J Food Prot 63, 1583-1586. Scotland, S.M., Smith, H.R., Willshaw, G.A., and Rowe, B. (1983). Vero cytotoxin production in strain of Escherichia coli is determined by genes carried on bacteriophage. The Lancet 322, 216. Small, A., Reid, C.A., Avery, S.M., Karabasil, N., Crowley, C., and Buncic, S. (2002). Potential for the spread of Escherichia coli O157, Salmonella, and Campylobacter in the lairage environment at abattoirs. J Food Prot 65, 931-936. Small, P., Blankenhorn, D., Welty, D., Zinser, E., and Slonczewski, J.L. (1994). Acid and base resistance in Escherichia coli and Shigella flexneri: role of rpoS and growth pH. J Bacteriol 176, 1729-1737. Spitzy, K.H., and Georgopoulos, A. (1986). Clinical microbiology and chemotherapy in the spirit of Escherich. Wien Med Wochenschr 136, 155-157. Stuart B. Levy, M.D. (1992). The antibiotic paradox: How miracle drugs are Destroying the miracle. Plenum Press: New York, 1:279. Teng, L.J., Hsueh, P.R., Liaw, S.J., Ho, S.W., and Tsai, J.C. (2004). Genetic detection of diarrheagenic Escherichia coli isolated from children with sporadic diarrhea. J Microbiol Immunol Infect 37, 327-334. USDA 9 CFR Part 304, e.a. (1996). Pathogen reduction; Hazard Analysis and Critical Control Point (HACCP) Systems. Department of agriculture Food Safety and Inspection Service 61, 38805-38989. Vuddhakul, V., Patararungrong, N., Pungrasamee, P., Jitsurong, S., Morigaki, T., Asai, N., and Nishibuchi, M. (2000). Isolation and characterization of Escherichia coli O157 from retail beef and bovine feces in Thailand. Fems Microbiol Lett 182, 343-347. Waldroup AL, S.J., Hierholzer RE, Kopek JM, and Waldroup PW (1992). Effects of bird density on Salmonella contamination of prechill carcasses. Poult Sci 71, 844- 849. Waldroup, A.L., Skinner, J.T., Hierholzer, R.E., Kopek, J.M., and Waldroup, P.W. (1992). Effects of bird density on Salmonella contamination of prechill carcasses. Poult Sci 71, 844-849. Wang, G., and Doyle, M.P. (1998). Survival of enterohemorrhagic Escherichia coli O157:H7 in water. J Food Prot 61, 662-667. Whipp, S.C., Rasmussen, M.A., and Cray, W.C., Jr. (1994). Animals as a source of Escherichia coli pathogenic for human beings. J Am Vet Med Assoc 204, 1168-1175. Whyte, P., Collins, J.D., McGill, K., Monahan, C., and O''Mahony, H. (2001). Quantitative investigation of the effects of chemical decontamination procedures on the microbiological status of broiler carcasses during processing. J Food Prot 64, 179-183. Wickham, M.E., Lupp, C., Mascarenhas, M., Vazquez, A., Coombes, B.K., Brown, N.F., Coburn, B.A., Deng, W., Puente, J.L., Karmali, M.A., et al. (2006). Bacterial genetic determinants of non-O157 STEC outbreaks and hemolytic-uremic syndrome after infection. J Infect Dis 194, 819-827. Wolin, M.J. (1969). Volatile fatty acids and the inhibition of Escherichia coli growth by rumen fluid. Appl Microbiol 17, 83-87. Wu FT, P.T. (1999). Rapid detection of pathogenic Escherichia coli by polymerase chain reaction. Chin Agric Chem Soc 37, 179-189.
食因性疾病在世界各地廣泛的發生,其中一個途徑是透過被病原微生物汙染的肉品造成人類的感染,因此肉品衛生安全在公共衛生上一直是被關注的重點。此篇研究目的主要是針對台灣中南部牛隻屠宰場與畜牧場之牛隻進行肉品衛生安全之調查,於西元2010年8月至2011年3月間,依照美國農業部 (USDA/ FSIS) 規範方法以海棉擦拭法蒐集屠體表面檢體,全部共281個體表海綿樣本來自於屠宰場的94隻牛,113個糞便樣本來自於畜牧場,樣本透過聚合酶連鎖反應增幅產毒素基因片段鑑定病原性性大腸桿菌,並且進行屠體表面生菌數試驗以及藥物敏感性試驗。屠體表面採樣的4個時間點分別為屠宰過程中的去皮前 (表皮),去皮後,去內臟後以及分切過程後。結果顯示屠體非O157:H7腸出血性大腸桿菌與腸病原性大腸桿菌盛行率分別為6.4 ± 5%與25.5 ± 5%,糞便為0.88±5%與9.73±5%,大腸桿菌O157:H7、腸侵襲性大腸桿菌以及腸毒素性大腸桿菌皆沒有分離到。屠體表面總生菌數(log10CFU/cm2)的結果顯示,其中位數與四分位數 (interquartile ranges; IQR) 在4個屠宰流程下分別為4.8 (IQR: 4.1–5.4), 2.7 (IQR: 1.9–3.2), 2.7 (IQR: 2.1–3.1) 及3.7 (IQR: 2.8–4.3),除了去皮後與去內臟後兩階段相比較時無統計學上顯著差異外,其餘各組相互比較下皆有顯著差異(p<0.05),大腸桿菌生菌數 (log10CFU/cm2) 結果分別為2.2 (IQR: 1.5–3.0),0.0 (IQR: 0.0–0.1),0.1 (IQR: -0.2–0.9) 及0.0 (IQR: 0.00–0.6),其生菌數只有表皮分別與其他三組互相比較時有顯著差異 (p<0.05)。大腸桿菌群生菌數 (log10CFU/cm2) 結果分別為1.9 (IQR: 1.0–2.5),0.0 (IQR: 0.0–0.7),0.7 (IQR: 0.1–1.0) 以及1.2 (IQR: 0.0–2.4),除了去內臟後與去皮後/或分切後相互比較時無顯著差異外,其他各組互相比較時皆有顯著差異(p<0.05)。藥物敏感應試驗的結果發現,本次分離到的大腸桿菌對doxycycline與streptomycin的抗藥性分別占46.34%與47.14%,多重抗藥性菌株則占35.3%。本次研究結果顯示了在牛隻屠宰過程中,屠宰流程中需要主要管制點 (critical control point) 的建立,特別是針對分切過程點的管制。同時在被汙染的肉品上,病原性大腸桿菌與多重抗藥性大腸桿菌的存在也非常值得關注。總結以上結果,在台灣牛隻屠宰場的屠宰流程上需要加強例行性的監測,以達到確保肉品衛生安全的目的。

Foodborne diseases occur worldwide, mainly through the consumption of contaminated meat. Therefore, meat safety is an important public health issue. This study was conducted to investigate meat safety, through determining the prevalence of enterovirulent Escherichia coli (EEC) infection in indigenous cattle from slaughterhouses and farms in central and southern Taiwan during August 2010 to March 2011. Samples were collected according to USDA/FSIS standardized method. A total of 113 fecal samples were collected from farms, and 281 swab samples were collected from 94 carcasses for identification of EEC by multiplex polymerase chain reaction and examination of bacterial counts as well as antimicrobial susceptibility tests. Swab samples were collected at four different stages during slaughtering, including the hide (per-removal), preevisceration, postevisceration and postprocessing. Results showed the prevalences of non-O157 enterohemorrhagic E. coli and enteropathogenic E. coli were 6.4±5% and 25.5±5%, respectively. E. coli O157:H7, enterotoxigenic E. coli, and enteroinvasive E. coli were not isolated. The medians and interquartile ranges (IQR) of aerobic plate counts (log10CFU/ cm2) in four different stages were 4.8 (IQR: 4.1-5.4), 2.7 (IQR: 1.9-3.2), 2.7 (IQR: 2.1-3.1) and 3.7 (IQR: 2.8-4.3), respectively. Except for the comparison between preevisceration and postevisceration stages, the count was significantly different between other pairwise comparisons of the four stages (p<0.05). Results in E. coli counts (log10CFU/cm2) were 2.2 (IQR: 1.5-3.0), 0.0 (IQR: 0.0-0.1), 0.1 (IQR: -0.2-0.9) and 0.0 (IQR: 0.00-0.6), respectively. A significantly difference in bacterial count was found when comparing hide to other three stages (p<0.05). Results in coliforms counts (log10CFU/cm2) were 1.9 (IQR: 1.0-2.5), 0.0 (IQR: 0.0-0.7), 0.7 (IQR: 0.1-1.0) and 1.2 (IQR: 0.0-2.4), respectively. Except for the comparison between postevisceration and preevisceration/ or postprocessing stages, counts between any other pairwise comparisons of the four stages showed significant difference (p<0.05). In antimicrobial susceptibility tests, high percentage of doxycycline and streptomycin resistance were identified (46.34% and 47.14%, respectively), and percentage of multidrug-resistant E. coli was 35.3%. Our results implied that slaughtering procedures in abattoir should set a critical control point especially in postprocessing stage. Meat contamination with EEC and multidrug-resistant E. coli was also noticed. In conclusion, more efforts on regular monitoring slaughtering procedures in abattoir are needed to ensure the meat safety in Taiwan.
其他識別: U0005-2007201117521800
Appears in Collections:微生物暨公共衛生學研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.