Please use this identifier to cite or link to this item:
標題: 台灣傳統市場有色肉雞沙門氏菌血清型及抗藥性之研究
The Research for Serotype and Antimicrobial Resistance of Colored Meat Chicken Salmonella in Taiwan Traditional Market
作者: 翁嘉伶
Ling, Weng Chia
關鍵字: Colored Meat Chicken;有色肉雞;Salmonella;Serotype;Antimicrobial Resistance;沙門氏菌;血清型;抗藥性
出版社: 獸醫公共衛生學研究所
引用: 王裕智。台灣屠體沙門氏菌流行病學及抗藥性研究。碩士論文。國立中興大學獸醫公共衛生研究所。2005。 宋華聰。動物藥品概論。現代畜殖。第15卷。37-39。1981。 林興誠。傳統市場家禽活體屠宰問題面面觀。動物保護公共論壇論文集。財團法人中央畜產會。台北。179-186。2004。 邱蘭皓。台灣南部地區雞場沙門氏菌流行病學研究:血清群、抗藥性及基因型分析。碩士論文。國立嘉義大學動物科學系暨研究所。2004。 許桂森, 林明忠, 蕭哲志, 張美姬。簡明圖解藥理學。藝軒圖書出版社。1997。 郭俊緯。傳統市場與屠宰場仿土雞沙門氏菌污染之調查研究。碩士論文。國立中興大學獸醫病理學研究所。2007。 廖志偉。臺灣中部地區流浪犬及家犬沙門氏菌感染之研究。碩士論文。國立中興大學獸醫病理學研究所。2007。 潘子明。食品中毒的幕後黑手-沙門氏桿菌。科學月刊。316, 1996。 謝志宏。種禽及孵化蛋之沙門氏菌的疫情與抗藥性分析。碩士論文。國立嘉義大學獸醫學系研究所。2006。 龔榮太。台灣土雞突破傳統與創新價值行銷思維之探討。中央畜產會。2007。 Acha P. N. and Szyfres B. Zoonoses and communicable diseases common to man and animals, Salmonellosis. Pan American Health Organization, Washington, USA. 233-246, 2003. Ackman D.M., Drabkin P., Birkhead G. and Gieslak P. Reptile-associated salmonellosis in New York State. Pediatr Infect Dis J. 14: 955-959, 1995. Angkititrakul S., Chomvarin C., Chaita T., Kanistanon K. and Waethewutajarn S. Epidemiology of antimicrobial resistance in Salmonella isolated from pork, chicken meat and humans in Thailand. Southeast Asian J Trop Med Public Health. 36: 1510-1515, 2005. Antunes P., Réu C. C., Sousa J. C., Peixe L.and Pestana N. Incidence of Salmonella from poultry products and their susceptibility to antimicrobial agents. Int J Food Microbiol. 82: 97-103, 2003. Alcaine S. D., Warnick L. D. and Wiedmann M. Antimicrobial resistance in nontyphoidal Salmonella. J Food Prot. 70: 780-790, 2007. Arsenault J., Letellier A., Quessy S., Normand V. and Boulianne M. Prevalence and risk factors for Salmonella spp. and Campylobacter spp. caecal colonization in broiler chicken and turkey flocks slaughtered in Quebec, Canada. Preventive Veterinary Medicine. 81: 250–264, 2007. Bangtrakulnonth A, Pornrungwong S, Pulsrikarn C, Boonmar S, and Yamaguchi K. Recovery of Salmonella using a combination of selective enrichment media and antimicrobial resistance of isolates in meat in Thailand. Southeast Asian J Trop Med Public Health. 37: 742-746, 2006. Barrow P.A., Huggins M.B. and Lovell M.A. Host specificity of Salmonella infection in chickens and mice is expressed in vivo primarily at the level of the reticuloendothelial system. Infect Immun. 62: 4602-4610, 1994. Baumler, A. J., and F. Heffron. Mosaic structure of the smpB-nrdE intergenic region of Salmonella enterica. J Bacteriol. 180: 2220–2223, 1998. Berrang M.E., Ladely S.R., Simmons M., Fletcher D.L. and Fedorka-Cray P.J. Antimicrobial Resistance Patterns of Salmonella from Retail Chicken. Internation Journal of Poultry Science. 5: 351-354, 2006. Blackburn CW. Rapid and alternative methods for the detection of Salmonella in foods. J. Appl. Bacteriol. 75: 199-214, 1993. Bohaychuk V.M., G.E. Gensler, R.K. King, K.I. Manninen, O. Sorensen, J.T. Wu, M.E. Stiles, L.M. McMullen . Occurrence of pathogens in raw and ready-to-eat meat and poultry products collected from the retail marketplace in Edmonton, Alberta, Canada. J Food Prot. 69: 2176-2182, 2006. Boonmar S., Bangtrakulnonth A., Pornrunangwong S., Marnrim N., Kaneko K.I. and Ogawa M. Salmonella in Broiler Chickens in Thailand with Special Reference to Contamination of Retail Meat with Salmonella Enteritidis. J Vet Med Sci. 60: 1233-1236, 1998. Brenner F. W., Villar R. G., Angulo F. J., Tauxe R., and Swaminathan B. Salmonella Nomenclature. J Clin Microbiol. 38: 2465-2467, 2000. Carter G. R. and Wise D. J. Enterobacteriaceae Ⅱ:Salmonella and Yersinia. Essentials of veterinary bacteriology and mycology, Iowa State Press, Iowa, US. 137-148, 2004. Cherrington C. A. and Huis in''t Veld J. H. Development of a 24 h screen to detect viable Salmonellas in faeces. J Appl Bacteriol. 75: 58-64, 1993. Chiou C. S., Huang J. F., Tsai L. H., Hsu K. M., Liao C. S., and Chang H. L. A simple and low-cost paper-bridged method for Salmonella phase reversal. Diagn Microbiol Infect Dis. 54: 315-317, 2006. Chiu C.H., Su L.H., Hung C.C., Chen K.L., and Chu C. Prevalence and Antimicrobial Susceptibility of Serogroup D Nontyphoidal Salmonella in a Universiospital in Taiwan. Journal of Cinical microbiology. 415-417, 2004. Corry J.E.L., Allen V.M., Hudson W.R., Breslin M.F. and Davies R.H. Sources of salmonella on broiler carcasses during transportation and processing: modes of contamination and methods of control. Journal of Applied Microbiology. 92: 424-432, 2002. Cox N. A., Berrang M. E., and Cason J. A. Salmonella Penetration of Egg Shells and Proliferation in Broiler Hatching Eggs—A Review. Poultry Science. 79:1571–1574, 2000. Cui S, Ge B, Zheng J, Meng J. Prevalence and antimicrobial resistance of Camylobacter spp. and Salmonella serovars in organic chickens from Maryland retail stores. Appl Environ Microbiol. 71: 4108-4111, 2005. Darwin K. H. and Miller V. L. Molecular Basis of the Interaction of Salmonella with the Intestinal Mucosa. Clinical Microbiology Reviews. 12: 405-428, 1999. Davies R.H. and Wray C. An approach to reduction of Salmonella infection in broiler chicken flocks through intensive sampling and identification of cross-contamination hazards in commercial hatcheries. Int. J. Food Microbiol. 24: 147-160, 1994. Duffy G., Cloak O. M., O''Sullivan M. G., Guillet A., Sheridan J. J., Blair I. S. and McDowell D. A. The incidence and antibiotic resistance profiles of Salmonella spp. on Irish retail meat products. Food Microbiology . 16: 623-631, 1999. Duijkeren E.van, Wannet W.J.B., Houwers D.J., and Plet W. van. Serotype and Phage Type Distribution of Salmonella Strains Isolated from Humans, Cattle, Pigs, and Chickens in The Netherlands from 1984 to 2001. Jounal of Clinical Microbiology 3980-3985, 2002. Foley S. L. and Lynne A. M. Food animal-associated Salmonella challenges: Pathogenicity and antimicrobial resistance. J Anim Sci. 86: E173-E187, 2008. Forshell L. P. and Wierup M. Salmonella contamination: a significant challenge to the global marketing of animal food products. Rev sci tech Off int Epiz. 25: 541-554, 2006. Frankel G., Newton S. M. C., Schoolnik G. K. and Stockerl B. A. D. Intragenic recombination in a flagellin gene: characterization of the H1-j gene of Salmonella typhi. The EMBO Journal. 8: 3149 - 3152, 1989. Fricker C.R. The isolation of Salmonellas and Campylobacters. J Appl Bacteriol. 63: 99-116, 1987. Gast R.K., Mitchell B.W., and Holt P.S. Evaluation of culture media for detecting airborne Salmonella Enteritidis collected with an electrostatic sampling device from the environment of experimentally infected laying hens. Poult Sci. 83: 1106-1111, 2004. Harrison W.A., Griffith C.J., Tennant D. and Peeters A.C. Incidence of Campylobacter and Salmonella isolated from retail chicken and associated packaging in South Wales. Lett Appl Microbiol. 33: 450-454, 2001. Hirose K., Ezaki T., Miyake M., Li T., Khan A.Q., Kawamura Y., Yokoyama H. and Takami T. Survival of Vi-capsulated and Vi-deleted Salmonella Typhi strains in cultured macrophage expressing different levels of CD14 antigen. FEMS Microbiol Lett. 147: 259-265, 1997. Holt P.S. and Chaubal L.H. Detection of motility and putative synthesis of flagellar proteins in Salmonella Pullorum cultures. J Clin Microbiol. 35: 1016-1020, 1997. Jensen A.N., Sorensen G., Baggesen D.L., Bodker R. and Hoorfar J. Addition of Novobiocin in pre-enrichment step can improve Salmonella culture protocol of modified semisolid Rappaport-Vassiliadis. J Microbiol Methods. 249-255, 2003. Johnson J.M., Rajic A. and McMullen L.M. Antimicrobial resistance of selected Salmonella isolates from food animals and food in Alberta. Can Vet J. 46: 141-146, 2005. Juven B.J., Cox N.A., Bailey J.S., Thomson J.E., Charles O.W., and Schutze J.V. Recovery of Salmonella from artificially contaminated poultry feeds in non-selective and selective broth media. J Food Prot. 47: 299-302, 1984. Khachatourians G.G. Agricultural use of antibiotics and the evolution and transfer of antibiotic-resistant bacteria. Canadian Medical Association Journal. 159: 1129–1136, 1998. Kieun L., Lee M., Lim J., Jung J., Park Y., and Lee Y. Contamination of Chicken Meat with Salmonella enterica Serovar Haardt with Nalidixic Acid Resistance and Reduced Fluoroquinolone Susceptibility. J Microbiol Biotechnol. 18: 1853–1857, 2008. Kim S., Frye J.G., Hu J., Fedorla-Cray P.J., Gautom R. and Boyle D.S. Multiplex PCR-Based Method for Identification of Common Clinical Serotypes of Salmonella enterica subsp. enterica. Journal of Clinical Microbiology. 3608–3615, 2006. Kudaka J., Itokazu K., Taira K., Iwai A., Kondo M., Susa T., and Iwanaga M. Characterization of Salmonella isolated in Okinawa, Japan. Jpn J Infect Dis. 59 : 15-19, 2006. Lauderdale T.L., Aarestrup F.M., Chen P.C., Lai J.F., Wang H.Y., Shiau Y.R., Huang I.W., and Hung C.L. Multidrug resistance among different serotypes of clinical Salmonella isolates in Taiwan. Diagn Microbiol Infect Dis. 55: 149-155, 2006. Lenglet A. Over 2,000 cases so far in Salmonella Hadar outbreak in Spain associated with consumption of pre-cooked chicken, July-August. Eurosurveillance. 10: 196-197, 2005. Lessel E.F. Bacterial Type Cultures of the American Type Culture Collection. International Bulletin of Bacteriological Nomenclature and Taxonomy.12: 71-88, 1962. Li J., Nelson K., Mcwhorter A.C., Whittam T. S., and Selander R. K. Recombinational basis of serovar diversity in Salmonella enterica. Proc Natl Acad Sci USA. 91: 2552-2556, 1994. Looney R. J. and Steigbigel R.T. Role of the Vi antigen of Salmonella typhi in resistance to host defense in vitro. J Lab Clin Med. 108: 506-516, 1986. Macnab R.M. Genetics and biogenesis of bacterial flagella. Annu Rev Genet. 26: 131–158, 1992. Manie T., Khan S., Brozel V.S., Veith W.J. and Gouws P.A. Antimicrobial resistance of bacteria isolated from slaughtered retail chickens in South Africa. Letters in Applied Microbiology. 26: 253–258, 1998. McEwen S.A. and Fedorka-Cray P. J. Antimicrobial use and resistance in animals. Clin Infect Dis. 34: S93-106, 2002. McQuiston J. R., Parrenas R., Ortiz-Rivera M., L. Gheesling, F. Brenner, and P. I. Fields. Sequencing and Comparative Analysis of Flagellin Genes fliC, fljB, and flpA from Salmonella. Journal of clinical microbiology. 1923–1932, 2004. Mead P.S., Slutsker L., Dietz V. , McCaig L. F., Bresee J. S., Shapiro C., Griffin P. M., and Tauxe R. V. Food-related illness and death in the United States. Emerg Infect Dis. 5: 607-625, 1999. Minor L.L. Facultatively anaerobic gram-negative Rods. In J G Holt, Bergey’s Manual of Systematic Bacteriology, 1st ed, Williams and Wilkinsm, Baltomore, USA. 427-458, 1988. Nayak R. and Kenney P.B. Screening of Salmonella isolates from a turkey production facility for antibiotic resistance. Poult Sci. 81: 1496-1500, 2002. Nowak B., Von Müffling T., Chaunchom S., Hartung J. Salmonella contamination in pigs at slaughter and on the farm: A field study using an antibody ELISA test and a PCR technique. Int J Food Microbiol.115:259-267, 2007. Ohl M. E. and Miller. Salmonella: a model for bacterial pathogenesis. Annu Rev Med. 52: 259-274, 2001. Padungtod P. and Kaneene J.B. Salmonella in food animals and humans in northern Thailand. Int J Food Microbiol. 108: 346-354, 2006. Pangloli P, Dje Y., Oliver S.P., Mathew A., Golden D.A., Taylor W.J., and Draughon F.A. Evaluation of methods for recovery of Salmonella from dairy cattle, poultry, and swine farms. J Food Prot. 66: 1987-1995, 2003. Pererat K. and Murray A. Development of a PCR assay for the identification of Salmonella enterica serovar Brandenburg. Journal of Medical Microbiology . 57: 1223-1227, 2008. Poppe C., Mcfadden K.A., and Denczuk W.H. Drug resistance, plasmids, biotypes and susceptibility to bacteriophages of Salmonella isolated from poultry in Canada. International Journal of Food Microbiology. 30 :325-344, 1996. Popoff M.Y. and Minor L. Antigenic formulas of the Salmonella serovars, 7th revision. WHO Collaborating Center for Reference and Research on Salmonella, Institut Pasteur, Paris, Franc. Research in Microbiology.149: 601-604, 1998. Popoff M.Y., Bockemühl J. and Gheesling L.L. Supplement 2001(no.45)to the Kauffmann-White scheme. Research in Microbiology. 154: 173-174, 2003. Popoff M.Y., Bockemühl J. and Gheesling L.L. Supplement 2002 (no. 46) to the Kauffmann–White scheme. Research in Microbiology. 155: 568-570, 2004. Quinn P.J., Markey B.K., Carter M.E., Donnelly W.J. and Leonard F. Enterobacteriaceae. Veterinary microbiology and microbial disease, Blackwell Science, Oxford, UK. 106-123, 2002. Rajashekara G., Haverly E., Halvorson D.A., Ferris K.E., Lauer D.C. and Nagaraja K.V. Multidrug-resistant Salmonella Typhimurium DT104 in poultry. Journal of Food Protection. 63: 155–161, 2000. Rivera M.J., Rivera N., Castillo J., Rubio M.C., and GÓmez-Lus R. Molecular and Epidemiological Study of Salmonella Clinical Isolates. Journal of Clinical Microbiology. 29: 927-932, 1991. Rowe B., Ward L.R. and Threlfall E.J. Multidurg-Resistant Salmonella typhi: A Worldwide Epidemic. Clin Infect Dis. 24: S106-109, 1997. Rusal G., Khair J., Radu S., Cheah C.T., and Yassin R.M. Prevalence of Salmonella in broilers at retail outlets, processing plants and farms in Malaysia. International Journal of Food Microbiology. 33: 183-194, 1996. Sakai T., and Chalermchaikit T. The major sources of Salmonella Enteritidis in Thailand. International Journal of Food Microbiology. 31: 173-189, 1996. Sasipreeyajan J., Jerngklinchan J., Koowatananukul C. and Saitanu K. Prevalence of Salmonella in broiler, layer and breeder flocks in Thailand. Tropical Animal Health and Production. 28: 174-180, 1996. Silas J.C., Carpenter J.A. and Reagan J.O. Prevalence of Salmonella in Pork Sausage. J Anim Sci. 59: 122-124, 1984. Silverman M., Zieg J., Hilmen M. and Simon M. Phase variation in Salmonella: Genetic analysis of a recombinational switch. Proc Natl Acad Sci USA. 76: 391-395, 1979. Silvia H.L., McQuiston J.R., Usera M.A., Fields P.I., Garaizar J., and Echeita M.A. Multiplex PCR for Distinguishing the Most Common Phase-1 Flagellar Antigens of Salmonella spp. Journal of clinical microbiology. 2581-2586, 2004. Smith N.H., Beltran P., and Selander R.K. Recombination of Salmonella Phase 1 Flagellin Genes Generates New Servars. Journal of Bacteriology. 2209-2216, 1990. Smith N.H. and Selander R.K. Molecular genetic basis for complex flagellar antigen expression in triphasic serovar of Salmonella. Proc Natl Acad Sci USA 88: 956-960, 1991. Su L.H., Chiu C.H., Wu T.L., Chu C., Chia J.H., Kuo A.J., Lee C.C., Sun C.F., and Ou J.T. Molecular epidemiology of Salmonella enterica serovar Enteritidis isolated in Taiwan. Microbiol Immunol. 46: 833-840, 2002. Swartz M.N. Human diseases caused by foodborne pathogens of animal origin. Clin Infect Dis 34: 111-122, 2002. Tetsuo A., Hidetake E., Akemi K., Kanako I., Yutaka T. and Toshio T. Antimicrobial Resistance in Salmonella Isolates from Apparently Healthy Food-Producing Animal from 2000 to 2003: the First Stage of Japanese Veterinary Antimicrobial Resistance Monitoring. J Vet Med Sci. 68: 881-884, 2006. Thomason B.M., Dodd D.J., and Cherry W.B. Increased recovery of Salmonellae from environmental samples enriched with buffered peptone water. Appl Environ Microbiol. 34: 270-273, 1977 Thomason B.M. .and Dodd D.J. Enrichment procedures for isolating Salmonellae from raw meat and poultry. Appl Environ Microbiol. 36: 627-628, 1978. Threlfall E.J. Antimicrobial drug resistance in Salmonella: problems and perspectives in food- and water-borne infections. FEMS Microbiol Rev. 26:141-148, 2002. Uyttendaele M.R., J.M. Debevere, R.M. Lips, K.D. Neyts. Prevalence of Salmonella in poultry carcasses and their products in Belgium. Int J Food Microbiol. 40: 1-8.1998. Uzzau S., Brown D.J., Wallis T., Rubino S., Leori G.., Bernard S., Casadesus J., Platt D.J. and Olsen J.E. Host adapted serotypes of Salmonella enterica. Epidemiol Infect. 125: 229-255, 2000. Van der Zee H and Huis in´t Veld JHJ. Methods for the rapid detection of Salmonella In: Salmonella in domestic animals. Wray C and Wary A. CABI publishing. 373-392, 2000. Van Pelt W., Mevius D., Stoelhorst H.G., Kovats S., van de Giessen A.W., Wannet W.and Duynhoven Y.T. A large increase of Salmonella infections in 2003 in The Netherlands: hot summer or side effect of the avian influenza outbreak? Euro Surveill. 9: 17-19, 2004. Waltman W.D., Horne A.M., and Pirkle C. Comparative analysis of media and methods for isolating Salmonella from poultry and environmental samples. In Proceeding of Symposium on the Diagnosis of Salmonella Infections. United States Animal Health Association and American Association of Laboratory Veterinary Diagnosticians. 1-14, 1995. Wigley P., Hulme S.D., Bumstead N., Barrow P.A. In vivo and in vitro studies of genetic resistance to systemic salmonellosis in the chicken encoded by the SAL1 locus. Microbiol Infect 4:1111-1120, 2002. Wilson I.G. Salmonella and Campylobacter contamination of raw retail chickens from different producers: a six year survey. Epidemiol. Infect. 129: 635-645, 2002. Yan S.S., Pendark M.L., Abela-Ridder B, Punderson J.W., Fedorko D.P. and Foley S.L. An overview of Salmonella typing Public health perspectives. Applied Immunol Rev. 4: 189-204, 2004. Zhang L., Yan Z., and Ryser E.T. Comparison of the reveal test, the U.S. Food and Drug Administration culture method, and selective media for recovery of Salmonella enteritidis from commercial egg layer flock environments. J Food Prot. 69: 2766-2769, 2006. Zhao S., McDermott P. F. White D.G., Qaiyumi S., Friedman S.L., Abbott J.W. Glenn A., Ayers S. L., Post K. W., Fales W. H., Wilson R. B. Reggiardo C. and Walker R. D. Characterization of multidrug resistant Salmonella recovered from diseased animals. Veterinary Microbiology. 123: 122-132, 2007. Zieg, J., Silverman M., Hilmen M., and Simon M. Recombinational switch for gene expression. Science. 196:170–172, 1977. Zutter L.D. Molecular epidemiology of Salmonella and Campylobacter contamination of poultry transport and slaughter. Department of Veterinary Public Health and Food Safety Faculty of Veterinary Medicine, Ghent University. 2007. 網路資源: 1. 2. 3. 4. 5.
沙門氏菌(Salmonella)為造成人類及動物胃腸炎的主要病原之一,沙門氏菌症(Salmonellosis)為世界性重要人畜共通傳染病,受感染之家禽及其相關製品為造成人類沙門氏菌症的主要來源。本研究藉由調查台灣地區傳統市場有色肉雞沙門氏菌感染比例、血清型別及抗藥性情形,並以聚合酶鏈鎖反應及脫氧核糖核酸基因定序分析比較不同物種所分離之沙門氏菌血清型別間是否有差異?以提供作為未來公共衛生之沙門氏菌監控計畫之參考。自2007年7月至2008年5月間,採集台灣南部及北部地區傳統市場有色肉雞之肝臟及膽囊進行分析,總採樣隻數為420隻雞,共分離到的174株沙門氏菌陽性分離株,其中,南部傳統市場共分離出58株,其陽性檢出率為13.81%;北部傳統市場共分離出116株,其陽性樣本檢出率為27.62%,結果發現北部傳統市場較南部傳統市場容易分離出沙門氏菌(p<0.05)。在膽囊檢體中共分離到100株陽性分離株,膽囊分離率為23.81%;在肝臟則分離到74株,肝臟分離率為17.62%,結果發現膽囊分離率顯著高於肝臟的分離率 (p<0.05)。檢出之常見血清型依序為 S. Albany(82.18%)、 S. Hadar (4.60%)、S. Enteritidis (4.60%)、 S. Thompson(2.87%)、 S. Schwarzengrund (2.30%)。在抗藥性比例中,一半以上分離株對抗菌劑如 Ampicillin、Colistin、Doxycycline、Florfenicol、Nalidixic acid及 Sulfamethoxazole- trimethoprim等具有抗藥性,且有多重抗藥性產生。將本實驗室自不同物種(人類、家禽及犬隻)分離之沙門氏菌進行DNA基因定序之分析,其結果顯示分離株之血清型為S. Albany、S. Enteritidis 及 S. Hadar 與基因庫之配對吻合度100%,而 S. Brandenburg 、S. Derby、 S. Thompson 分離株則分別顯示有不同的DNA及胺基酸序列差異點。以上研究資訊可提供作為沙門氏菌防治政策之參考,以降低沙門氏菌在公共衛生上之發生。

Salmonella is the main pathogeny which causes human and animal gastroenteritis and also an important zoonosis. The infected poultry and related products are the major sources lead to Salmonellosis. This research attempt to figure out different serotype of Salmonella isolated from different species by investigating Salmonella infection rate, serotype, antimicrobial resistance, meanwhile, performing PCR (Polymerase Chain Reaction) test and DNA sequence analysis on colored meat chicken from Taiwan traditional market. The research result will be provided as a reference to Salmonella monitoring project in public health field. The research datas were collected from the liver and gall bladder of colored meat chicken from traditional market in southern and northern region during July 2007 to May 2008. The total samples are 420 chickens. A total of 174 Salmonella strains were isolated, 58 isolates as a rate of 13.81% from southern region; 116 isolates as a rate of 27.62% from northern region. It is significantly easier to isolate Salmonella from chicken in traditional market in northern region (p<0.05). From samples of gall bladder, 100 positive isolates were found which was as a rate of 23.81%. In liver, 74 positive isolates were found which was as a rate of 17.62%. The result shows that isolation rate from gall bladder is significantly higher than liver's (p<0.05). In addition, the most common serotypes are listed by their popularity: S. Albany(82.18%), S. Hadar (4.60%), S. Enteritidis(4.60%), S. Thompson(2.87%), S. Schwarzengrund(2.30%). In the antimicrobial resistance test, half of those isolates already produced antimicrobial resistance and even multidurg resistant Ampicillin, Colistin, Doxycycline, Florfenicol, Nalidixic acid and Sulfamethoxazole-trimethoprim. When comparing DNA sequence analysis on different serotype of isolated, they are perfectly matched with the GenBank of S. Albany, S. Enteritidis and S. Hadar. However, S. Brandenburg, S. Derby and S. Thompson isolates demonstrated different sequences in DNA sequence and amino acids. In conclusion, the overall results provide a data base as the reference for the Salmonella prevention policy in public health
其他識別: U0005-1906200915192600
Appears in Collections:微生物暨公共衛生學研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.