Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/66417
標題: 假性狂犬病毒對猪介白素2 基因表現之調控
Regulation of Swine IL-2 Gene Expression or Production by Pseudorabies Virus Infection.
作者: 鄭珮儀
Cheng, Pei-Yi
關鍵字: pseudorabies virus;假性狂犬病毒
出版社: 獸醫微生物學研究所
引用: 參考文獻 林孫權、董明澄、劉正義、張照夫、黃萬居、鄭清木。1972。假性狂犬病 之發生報告。中華民國微生物學會雜誌 5:56-68。 Abmayr, S. M., Workman, J. L., and Roeder, R. G. (1988). The pseudorabies immediate early protein stimulates in vitro transcription by facilitating TFIID: promoter interactions. Genes Dev 2, 542-553. Ahlers, S. E., and Feldman, L. T. (1987). Immediate-early protein of pseudorabies virus is not continuously required to reinitiate transcription of induced genes. J Virol 61, 1258-1260. Aringer, M. (2002). T lymphocyte activation--an inside overview. Acta Med Austriaca 29, 7-13. Belak, S., Ballagi-Pordany, A., Flensburg, J., and Virtanen, A. (1989). Detection of pseudorabies virus DNA sequences by the polymerase chain reaction. Arch Virol 108, 279-286. Ben-Porat, T., DeMarchi, J. M., Lomniczi, B., and Kaplan, A. S. (1986). Role of glycoproteins of pseudorabies virus in eliciting neutralizing antibodies. Virology 154, 325-334. Ben-Porat, T., Rakusanova, T., and Kaplan, A. S. (1971). Early functions of the genome of herpesvirus. II. Inhibition of the formation of cell-specific polysomes. Virology 46, 890-899. Bianchi, A. T., Moonen-Leusen, H. W., van Milligen, F. J., Savelkoul, H. F., Zwart, R. J., and Kimman, T. G. (1998). A mouse model to study immunity against pseudorabies virus infection: significance of CD4+ and CD8+ cells in protective immunity. Vaccine 16, 1550-1558. Cai, W. Z., and Schaffer, P. A. (1989). Herpes simplex virus type 1 ICP0 plays a critical role in the de novo synthesis of infectious virus following transfection of viral DNA. J Virol 63, 4579-4589. Card, J. P., Whealy, M. E., Robbins, A. K., and Enquist, L. W. (1992). Pseudorabies virus envelope glycoprotein gI influences both neurotropism and virulence during infection of the rat visual system. J Virol 66, 54 3032-3041. Cheung, A. K. (1989). DNA nucleotide sequence analysis of the immediate-early gene of pseudorabies virus. Nucleic Acids Res 17, 4637-4646. Cheung, A. K., Vlcek, C., Paces, V., and Schwyzer, M. (1990). Update and comparison of the immediate-early gene DNA sequences of two pseudorabies virus isolates. Virus Genes 4, 261-265. Cheung, P., Banfield, B. W., and Tufaro, F. (1991). Brefeldin A arrests the maturation and egress of herpes simplex virus particles during infection. J Virol 65, 1893-1904. Dijkstra, J. M., Visser, N., Mettenleiter, T. C., and Klupp, B. G. (1996). Identification and characterization of pseudorabies virus glycoprotein gM as a nonessential virion component. J Virol 70, 5684-5688. Efstathiou, S., Kemp, S., Darby, G., and Minson, A. C. (1989). The role of herpes simplex virus type 1 thymidine kinase in pathogenesis. J Gen Virol 70 ( Pt 4), 869-879. Eloit, M., Fargeaud, D., L''Haridon, R., and Toma, B. (1988). Identification of the pseudorabies virus glycoprotein gp50 as a major target of neutralizing antibodies. Arch Virol 99, 45-56. Everett, R. D. (1988). Promoter sequence and cell type can dramatically affect the efficiency of transcriptional activation induced by herpes simplex virus type 1 and its immediate-early gene products Vmw175 and Vmw110. J Mol Biol 203, 739-751. Everett, R. D., and Maul, G. G. (1994). HSV-1 IE protein Vmw110 causes redistribution of PML. Embo J 13, 5062-5069. Feldman, L., Rixon, F. J., Jean, J. H., Ben-Porat, T., and Kaplan, A. S. (1979). Transcription of the genome of pseudorabies virus (A herpesvirus) is strictly controlled. Virology 97, 316-327. Feldman, L. T., Imperiale, M. J., and Nevins, J. R. (1982). Activation of early adenovirus transcription by the herpesvirus immediate early gene: evidence for a common cellular control factor. Proc Natl Acad Sci U S A 79, 55 4952-4956. Flamand, A., Raux, H., Gaudin, Y., and Ruigrok, R. W. (1993). Mechanisms of rabies virus neutralization. Virology 194, 302-313. Frame, M. C., McGeoch, D. J., Rixon, F. J., Orr, A. C., and Marsden, H. S. (1986). The 10K virion phosphoprotein encoded by gene US9 from herpes simplex virus type 1. Virology 150, 321-332. Fuller, A. O., Santos, R. E., and Spear, P. G. (1989). Neutralizing antibodies specific for glycoprotein H of herpes simplex virus permit viral attachment to cells but prevent penetration. J Virol 63, 3435-3443. Hampl, H., Ben-Porat, T., Ehrlicher, L., Habermehl, K. O., and Kaplan, A. S. (1984). Characterization of the envelope proteins of pseudorabies virus. J Virol 52, 583-590. Hayward, M. D., Curran, T., and Morgan, J. I. (1993). Immediate early genes: their involvement in physiological and pathological responses in the nervous system. NIDA Res Monogr 125, 39-53. Hill, J. M., Sedarati, F., Javier, R. T., Wagner, E. K., and Stevens, J. G. (1990). Herpes simplex virus latent phase transcription facilitates in vivo reactivation. Virology 174, 117-125. Hutchinson, L., Browne, H., Wargent, V., Davis-Poynter, N., Primorac, S., Goldsmith, K., Minson, A. C., and Johnson, D. C. (1992a). A novel herpes simplex virus glycoprotein, gL, forms a complex with glycoprotein H (gH) and affects normal folding and surface expression of gH. J Virol 66, 2240-2250. Hutchinson, L., Goldsmith, K., Snoddy, D., Ghosh, H., Graham, F. L., and Johnson, D. C. (1992b). Identification and characterization of a novel herpes simplex virus glycoprotein, gK, involved in cell fusion. J Virol 66, 5603-5609. Ihara, S., Feldman, L., Watanabe, S., and Ben-Porat, T. (1983). Characterization of the immediate-early functions of pseudorabies virus. Virology 131, 437-454. Jang, K. L., Pulverer, B., Woodgett, J. R., and Latchman, D. S. (1991). 56 Activation of the cellular transcription factor AP-1 in herpes simplex virus infected cells is dependent on the viral immediate-early protein ICPO. Nucleic Acids Res 19, 4879-4883. Jean, J. H., Ben-Porat, T., and Kaplan, A. S. (1974). Early functions of the genome of herpesvirus. 3. Inhibition of the transcription of the viral genome in cells treated with cycloheximide early during the infective process. Virology 59, 516-523. Johnson, D. C., and Huber, M. T. (2002). Directed egress of animal viruses promotes cell-to-cell spread. J Virol 76, 1-8. Jons, A., Dijkstra, J. M., and Mettenleiter, T. C. (1998). Glycoproteins M and N of pseudorabies virus form a disulfide-linked complex. J Virol 72, 550-557. Jons, A., Granzow, H., Kuchling, R., and Mettenleiter, T. C. (1996). The UL49.5 gene of pseudorabies virus codes for an O-glycosylated structural protein of the viral envelope. J Virol 70, 1237-1241. Kit, S., Kit, M., and Pirtle, E. C. (1985a). Attenuated properties of thymidine kinase-negative deletion mutant of pseudorabies virus. Am J Vet Res 46, 1359-1367. Kit, S., Qavi, H., Gaines, J. D., Billingsley, P., and McConnell, S. (1985b). Thymidine kinase-negative bovine herpesvirus type 1 mutant is stable and highly attenuated in calves. Arch Virol 86, 63-83. Klupp, B. G., Baumeister, J., Dietz, P., Granzow, H., and Mettenleiter, T. C. (1998). Pseudorabies virus glycoprotein gK is a virion structural component involved in virus release but is not required for entry. J Virol 72, 1949-1958. Klupp, B. G., Baumeister, J., Karger, A., Visser, N., and Mettenleiter, T. C. (1994). Identification and characterization of a novel structural glycoprotein in pseudorabies virus, gL. J Virol 68, 3868-3878. Klupp, B. G., Fuchs, W., Weiland, E., and Mettenleiter, T. C. (1997). Pseudorabies virus glycoprotein L is necessary for virus infectivity but dispensable for virion localization of glycoprotein H. J Virol 71, 7687-7695. 57 Klupp, B. G., and Mettenleiter, T. C. (1991). Sequence and expression of the glycoprotein gH gene of pseudorabies virus. Virology 182, 732-741. Kost, T. A., Jones, E. V., Smith, K. M., Reed, A. P., Brown, A. L., and Miller, T. J. (1989). Biological evaluation of glycoproteins mapping to two distinct mRNAs within the BamHI fragment 7 of pseudorabies virus: expression of the coding regions by vaccinia virus. Virology 171, 365-376. Lachmann, R. H., and Efstathiou, S. (1997). Utilization of the herpes simplex virus type 1 latency-associated regulatory region to drive stable reporter gene expression in the nervous system. J Virol 71, 3197-3207. Lokensgard, J. R., Thawley, D. G., and Molitor, T. W. (1990). Pseudorabies virus latency: restricted transcription. Arch Virol 110, 129-136. Lynas, C., Laycock, K. A., Cook, S. D., Hill, T. J., Blyth, W. A., and Maitland, N. J. (1989). Detection of herpes simplex virus type 1 gene expression in latently and productively infected mouse ganglia using the polymerase chain reaction. J Gen Virol 70 ( Pt 9), 2345-2355. Marchioli, C. C., Yancey, R. J., Jr., Petrovskis, E. A., Timmins, J. G., and Post, L. E. (1987). Evaluation of pseudorabies virus glycoprotein gp50 as a vaccine for Aujeszky''s disease in mice and swine: expression by vaccinia virus and Chinese hamster ovary cells. J Virol 61, 3977-3982. Martin, K. J., Lillie, J. W., and Green, M. R. (1990). Transcriptional activation by the pseudorabies virus immediate early protein. Genes Dev 4, 2376-2382. Masse, M. J., Jons, A., Dijkstra, J. M., Mettenleiter, T. C., and Flamand, A. (1999). Glycoproteins gM and gN of pseudorabies virus are dispensable for viral penetration and propagation in the nervous systems of adult mice. J Virol 73, 10503-10507. McGeoch, D. J., Dalrymple, M. A., Davison, A. J., Dolan, A., Frame, M. C., McNab, D., Perry, L. J., Scott, J. E., and Taylor, P. (1988). The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J Gen Virol 69 ( Pt 7), 1531-1574. McGregor, S., Easterday, B. C., Kaplan, A. S., and Ben-Porat, T. (1985). 58 Vaccination of swine with thymidine kinase-deficient mutants of pseudorabies virus. Am J Vet Res 46, 1494-1497. McLean, G., Rixon, F., Langeland, N., Haarr, L., and Marsden, H. (1990). Identification and characterization of the virion protein products of herpes simplex virus type 1 gene UL47. J Gen Virol 71 ( Pt 12), 2953-2960. Mettenleiter, T. C. (1989). Glycoprotein gIII deletion mutants of pseudorabies virus are impaired in virus entry. Virology 171, 623-625. Mettenleiter, T. C., Schreurs, C., Zuckermann, F., Ben-Porat, T., and Kaplan, A. S. (1988). Role of glycoprotein gIII of pseudorabies virus in virulence. J Virol 62, 2712-2717. Mettenleiter, T. C., Zsak, L., Zuckermann, F., Sugg, N., Kern, H., and Ben-Porat, T. (1990). Interaction of glycoprotein gIII with a cellular heparinlike substance mediates adsorption of pseudorabies virus. J Virol 64, 278-286. Moormann, R. J., de Rover, T., Briaire, J., Peeters, B. P., Gielkens, A. L., and van Oirschot, J. T. (1990). Inactivation of the thymidine kinase gene of a gI deletion mutant of pseudorabies virus generates a safe but still highly immunogenic vaccine strain. J Gen Virol 71 ( Pt 7), 1591-1595. Moriuchi, H., Moriuchi, M., Dean, H., Cheung, A. K., and Cohen, J. I. (1995). Pseudorabies virus EPO is functionally homologous to varicella-zoster virus ORF61 protein and herpes simplex virus type 1 ICPO. Virology 209, 281-283. Moriuchi, H., Moriuchi, M., Smith, H. A., Straus, S. E., and Cohen, J. I. (1992). Varicella-zoster virus open reading frame 61 protein is functionally homologous to herpes simplex virus type 1 ICP0. J Virol 66, 7303-7308. Moriuchi, H., Moriuchi, M., Straus, S. E., and Cohen, J. I. (1993). Varicella-zoster virus open reading frame 10 protein, the herpes simplex virus VP16 homolog, transactivates herpesvirus immediate-early gene promoters. J Virol 67, 2739-2746. Mosca, J. D., Bednarik, D. P., Raj, N. B., Rosen, C. A., Sodroski, J. G., Haseltine, W. A., Hayward, G. S., and Pitha, P. M. (1987). Activation of 59 human immunodeficiency virus by herpesvirus infection: identification of a region within the long terminal repeat that responds to a trans-acting factor encoded by herpes simplex virus 1. Proc Natl Acad Sci U S A 84, 7408-7412. Ober, B. T., Teufel, B., Wiesmuller, K. H., Jung, G., Pfaff, E., Saalmuller, A., and Rziha, H. J. (2000). The porcine humoral immune response against pseudorabies virus specifically targets attachment sites on glycoprotein gC. J Virol 74, 1752-1760. Parkinson, J., and Everett, R. D. (2000). Alphaherpesvirus proteins related to herpes simplex virus type 1 ICP0 affect cellular structures and proteins. J Virol 74, 10006-10017. Peeters, B., de Wind, N., Broer, R., Gielkens, A., and Moormann, R. (1992). Glycoprotein H of pseudorabies virus is essential for entry and cell-to-cell spread of the virus. J Virol 66, 3888-3892. Pellett, P. E., Jenkins, F. J., Ackermann, M., Sarmiento, M., and Roizman, B. (1986). Transcription initiation sites and nucleotide sequence of a herpes simplex virus 1 gene conserved in the Epstein-Barr virus genome and reported to affect the transport of viral glycoproteins. J Virol 60, 1134-1140. Perron, H., Suh, M., Lalande, B., Gratacap, B., Laurent, A., Stoebner, P., and Seigneurin, J. M. (1993). Herpes simplex virus ICP0 and ICP4 immediate early proteins strongly enhance expression of a retrovirus harboured by a leptomeningeal cell line from a patient with multiple sclerosis. J Gen Virol 74 ( Pt 1), 65-72. Petrovskis, E. A., Timmins, J. G., Armentrout, M. A., Marchioli, C. C., Yancey, R. J., Jr., and Post, L. E. (1986a). DNA sequence of the gene for pseudorabies virus gp50, a glycoprotein without N-linked glycosylation. J Virol 59, 216-223. Petrovskis, E. A., Timmins, J. G., and Post, L. E. (1986b). Use of lambda gt11 to isolate genes for two pseudorabies virus glycoproteins with homology to herpes simplex virus and varicella-zoster virus glycoproteins. J Virol 60, 185-193. 60 Ramshaw, I. A., Ramsay, A. J., Karupiah, G., Rolph, M. S., Mahalingam, S., and Ruby, J. C. (1997). Cytokines and immunity to viral infections. Immunol Rev 159, 119-135. Rao, A., Luo, C., and Hogan, P. G. (1997). Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol 15, 707-747. Rea, T. J., Timmins, J. G., Long, G. W., and Post, L. E. (1985). Mapping and sequence of the gene for the pseudorabies virus glycoprotein which accumulates in the medium of infected cells. J Virol 54, 21-29. Robbins, A. K., Dorney, D. J., Wathen, M. W., Whealy, M. E., Gold, C., Watson, R. J., Holland, L. E., Weed, S. D., Levine, M., Glorioso, J. C., and et al. (1987). The pseudorabies virus gII gene is closely related to the gB glycoprotein gene of herpes simplex virus. J Virol 61, 2691-2701. Robbins, A. K., Watson, R. J., Whealy, M. E., Hays, W. W., and Enquist, L. W. (1986). Characterization of a pseudorabies virus glycoprotein gene with homology to herpes simplex virus type 1 and type 2 glycoprotein C. J Virol 58, 339-347. Rock, D., Lokensgard, J., Lewis, T., and Kutish, G. (1992). Characterization of dexamethasone-induced reactivation of latent bovine herpesvirus 1. J Virol 66, 2484-2490. Rooney, J. W., Sun, Y. L., Glimcher, L. H., and Hoey, T. (1995). Novel NFAT sites that mediate activation of the interleukin-2 promoter in response to T-cell receptor stimulation. Mol Cell Biol 15, 6299-6310. Roop, C., Hutchinson, L., and Johnson, D. C. (1993). A mutant herpes simplex virus type 1 unable to express glycoprotein L cannot enter cells, and its particles lack glycoprotein H. J Virol 67, 2285-2297. Rubenstein, A. S., and Kaplan, A. S. (1975). Electron microscopic studies of the DNA of defective and standard pseudorabies virions. Virology 66, 385-392. Rue, C. A., and Ryan, P. (2002). Characterization of pseudorabies virus glycoprotein C attachment to heparan sulfate proteoglycans. J Gen Virol 83, 301-309. 61 Rziha, H. J., Mettenleiter, T. C., Ohlinger, V., and Wittmann, G. (1986). Herpesvirus (pseudorabies virus) latency in swine: occurrence and physical state of viral DNA in neural tissues. Virology 155, 600-613. Saalmuller, A., Pauly, T., Hohlich, B. J., and Pfaff, E. (1999). Characterization of porcine T lymphocytes and their immune response against viral antigens. J Biotechnol 73, 223-233. Sawitzky, D., Hampl, H., and Habermehl, K. O. (1990). Comparison of heparin-sensitive attachment of pseudorabies virus (PRV) and herpes simplex virus type 1 and identification of heparin-binding PRV glycoproteins. J Gen Virol 71 ( Pt 5), 1221-1225. Schijns, V. E., Haagmans, B. L., and Horzinek, M. C. (1995). IL-12 stimulates an antiviral type 1 cytokine response but lacks adjuvant activity in IFN-gamma-receptor-deficient mice. J Immunol 155, 2525-2532. Schreurs, C., Mettenleiter, T. C., Zuckermann, F., Sugg, N., and Ben-Porat, T. (1988). Glycoprotein gIII of pseudorabies virus is multifunctional. J Virol 62, 2251-2257. Sekulovich, R. E., Leary, K., and Sandri-Goldin, R. M. (1988). The herpes simplex virus type 1 alpha protein ICP27 can act as a trans-repressor or a trans-activator in combination with ICP4 and ICP0. J Virol 62, 4510-4522. Sin, J. I., Kim, J. J., Boyer, J. D., Ciccarelli, R. B., Higgins, T. J., and Weiner, D. B. (1999). In vivo modulation of vaccine-induced immune responses toward a Th1 phenotype increases potency and vaccine effectiveness in a herpes simplex virus type 2 mouse model. J Virol 73, 501-509. Taharaguchi, S., Inoue, H., Ono, E., Kida, H., Yamada, S., and Shimizu, Y. (1994). Mapping of transcriptional regulatory domains of pseudorabies virus immediate-early protein. Arch Virol 137, 289-302. Telford, E. A., Watson, M. S., McBride, K., and Davison, A. J. (1992). The DNA sequence of equine herpesvirus-1. Virology 189, 304-316. Tenser, R. B., Hay, K. A., and Edris, W. A. (1989). Latency-associated transcript but not reactivatable virus is present in sensory ganglion 62 neurons after inoculation of thymidine kinase-negative mutants of herpes simplex virus type 1. J Virol 63, 2861-2865. Thomsen, D. R., Marchioli, C. C., Yancey, R. J., Jr., and Post, L. E. (1987). Replication and virulence of pseudorabies virus mutants lacking glycoprotein gX. J Virol 61, 229-232. Vlcek, C., Kozmik, Z., Paces, V., Schirm, S., and Schwyzer, M. (1990). Pseudorabies virus immediate-early gene overlaps with an oppositely oriented open reading frame: characterization of their promoter and enhancer regions. Virology 179, 365-377. Watanabe, S., Ono, E., Nikami, H., and Kida, H. (1998). Promoter activity of sequence located upstream of the pseudorabies virus early protein 0 gene. Vet Microbiol 61, 7-19. Wathen, L. M., Platt, K. B., Wathen, M. W., Van Deusen, R. A., Whetstone, C. A., and Pirtle, E. C. (1985). Production and characterization of monoclonal antibodies directed against pseudorabies virus. Virus Res 4, 19-29. Wathen, M. W., and Wathen, L. M. (1984). Isolation, characterization, and physical mapping of a pseudorabies virus mutant containing antigenically altered gp50. J Virol 51, 57-62. Wirth, U. V., Fraefel, C., Vogt, B., Vlcek, C., Paces, V., and Schwyzer, M. (1992). Immediate-early RNA 2.9 and early RNA 2.6 of bovine herpesvirus 1 are 3'' coterminal and encode a putative zinc finger transactivator protein. J Virol 66, 2763-2772. Wu, C. A., Harper, L., and Ben-Porat, T. (1986). cis Functions involved in replication and cleavage-encapsidation of pseudorabies virus. J Virol 59, 318-327. Wu, C. L., and Wilcox, K. W. (1991). The conserved DNA-binding domains encoded by the herpes simplex virus type 1 ICP4, pseudorabies virus IE180, and varicella-zoster virus ORF62 genes recognize similar sites in the corresponding promoters. J Virol 65, 1149-1159. Yao, F., and Schaffer, P. A. (1994). Physical interaction between the herpes 63 simplex virus type 1 immediate-early regulatory proteins ICP0 and ICP4. J Virol 68, 8158-8168. Zsak, L., Mettenleiter, T. C., Sugg, N., and Ben-Porat, T. (1989). Release of pseudorabies virus from infected cells is controlled by several viral functions and is modulated by cellular components. J Virol 63, 5475-5477. Zsak, L., Zuckermann, F., Sugg, N., and Ben-Porat, T. (1992). Glycoprotein gI of pseudorabies virus promotes cell fusion and virus spread via direct cell-to-cell transmission. J Virol 66, 2316-2325. Zuckermann, F., Zsak, L., Reilly, L., Sugg, N., and Ben-Porat, T. (1989). Early interactions of pseudorabies virus with host cells: functions of glycoprotein gIII. J Virol 63, 3323-3329. Zuckermann, F. A., and Husmann, R. J. (1996). Functional and phenotypic analysis of porcine peripheral blood CD4/CD8 double-positive T cells. Immunology 87, 500-512. Zuckermann, F. A., Mettenleiter, T. C., Schreurs, C., Sugg, N., and Ben-Porat, T. (1988). Complex between glycoproteins gI and gp63 of pseudorabies virus: its effect on virus replication. J Virol 62, 4622-4626. Abmayr, S. M., Workman, J. L., and Roeder, R. G. (1988). The pseudorabies immediate early protein stimulates in vitro transcription by facilitating TFIID: promoter interactions. Genes Dev 2, 542-553. Ahlers, S. E., and Feldman, L. T. (1987). Immediate-early protein of pseudorabies virus is not continuously required to reinitiate transcription of induced genes. J Virol 61, 1258-1260. Aringer, M. (2002). T lymphocyte activation--an inside overview. Acta Med Austriaca 29, 7-13. Belak, S., Ballagi-Pordany, A., Flensburg, J., and Virtanen, A. (1989). Detection of pseudorabies virus DNA sequences by the polymerase chain reaction. Arch Virol 108, 279-286. Ben-Porat, T., DeMarchi, J. M., Lomniczi, B., and Kaplan, A. S. (1986). Role of glycoproteins of pseudorabies virus in eliciting neutralizing antibodies. Virology 154, 325-334. 64 Ben-Porat, T., Rakusanova, T., and Kaplan, A. S. (1971). Early functions of the genome of herpesvirus. II. Inhibition of the formation of cell-specific polysomes. Virology 46, 890-899. Bianchi, A. T., Moonen-Leusen, H. W., van Milligen, F. J., Savelkoul, H. F., Zwart, R. J., and Kimman, T. G. (1998). A mouse model to study immunity against pseudorabies virus infection: significance of CD4+ and CD8+ cells in protective immunity. Vaccine 16, 1550-1558. Cai, W. Z., and Schaffer, P. A. (1989). Herpes simplex virus type 1 ICP0 plays a critical role in the de novo synthesis of infectious virus following transfection of viral DNA. J Virol 63, 4579-4589. Card, J. P., Whealy, M. E., Robbins, A. K., and Enquist, L. W. (1992). Pseudorabies virus envelope glycoprotein gI influences both neurotropism and virulence during infection of the rat visual system. J Virol 66, 3032-3041. Cheung, A. K. (1989). DNA nucleotide sequence analysis of the immediate-early gene of pseudorabies virus. Nucleic Acids Res 17, 4637-4646. Cheung, A. K., Vlcek, C., Paces, V., and Schwyzer, M. (1990). Update and comparison of the immediate-early gene DNA sequences of two pseudorabies virus isolates. Virus Genes 4, 261-265. Cheung, P., Banfield, B. W., and Tufaro, F. (1991). Brefeldin A arrests the maturation and egress of herpes simplex virus particles during infection. J Virol 65, 1893-1904. Dijkstra, J. M., Visser, N., Mettenleiter, T. C., and Klupp, B. G. (1996). Identification and characterization of pseudorabies virus glycoprotein gM as a nonessential virion component. J Virol 70, 5684-5688. Efstathiou, S., Kemp, S., Darby, G., and Minson, A. C. (1989). The role of herpes simplex virus type 1 thymidine kinase in pathogenesis. J Gen Virol 70 ( Pt 4), 869-879. Eloit, M., Fargeaud, D., L''Haridon, R., and Toma, B. (1988). Identification of the pseudorabies virus glycoprotein gp50 as a major target of 65 neutralizing antibodies. Arch Virol 99, 45-56. Everett, R. D. (1988). Promoter sequence and cell type can dramatically affect the efficiency of transcriptional activation induced by herpes simplex virus type 1 and its immediate-early gene products Vmw175 and Vmw110. J Mol Biol 203, 739-751. Everett, R. D., and Maul, G. G. (1994). HSV-1 IE protein Vmw110 causes redistribution of PML. Embo J 13, 5062-5069. Feldman, L., Rixon, F. J., Jean, J. H., Ben-Porat, T., and Kaplan, A. S. (1979). Transcription of the genome of pseudorabies virus (A herpesvirus) is strictly controlled. Virology 97, 316-327. Feldman, L. T., Imperiale, M. J., and Nevins, J. R. (1982). Activation of early adenovirus transcription by the herpesvirus immediate early gene: evidence for a common cellular control factor. Proc Natl Acad Sci U S A 79, 4952-4956. Flamand, A., Raux, H., Gaudin, Y., and Ruigrok, R. W. (1993). Mechanisms of rabies virus neutralization. Virology 194, 302-313. Frame, M. C., McGeoch, D. J., Rixon, F. J., Orr, A. C., and Marsden, H. S. (1986). The 10K virion phosphoprotein encoded by gene US9 from herpes simplex virus type 1. Virology 150, 321-332. Fuller, A. O., Santos, R. E., and Spear, P. G. (1989). Neutralizing antibodies specific for glycoprotein H of herpes simplex virus permit viral attachment to cells but prevent penetration. J Virol 63, 3435-3443. Hampl, H., Ben-Porat, T., Ehrlicher, L., Habermehl, K. O., and Kaplan, A. S. (1984). Characterization of the envelope proteins of pseudorabies virus. J Virol 52, 583-590. Hayward, M. D., Curran, T., and Morgan, J. I. (1993). Immediate early genes: their involvement in physiological and pathological responses in the nervous system. NIDA Res Monogr 125, 39-53. Hill, J. M., Sedarati, F., Javier, R. T., Wagner, E. K., and Stevens, J. G. (1990). Herpes simplex virus latent phase transcription facilitates in vivo reactivation. Virology 174, 117-125. 66 Hutchinson, L., Browne, H., Wargent, V., Davis-Poynter, N., Primorac, S., Goldsmith, K., Minson, A. C., and Johnson, D. C. (1992a). A novel herpes simplex virus glycoprotein, gL, forms a complex with glycoprotein H (gH) and affects normal folding and surface expression of gH. J Virol 66, 2240-2250. Hutchinson, L., Goldsmith, K., Snoddy, D., Ghosh, H., Graham, F. L., and Johnson, D. C. (1992b). Identification and characterization of a novel herpes simplex virus glycoprotein, gK, involved in cell fusion. J Virol 66, 5603-5609. Ihara, S., Feldman, L., Watanabe, S., and Ben-Porat, T. (1983). Characterization of the immediate-early functions of pseudorabies virus. Virology 131, 437-454. Jang, K. L., Pulverer, B., Woodgett, J. R., and Latchman, D. S. (1991). Activation of the cellular transcription factor AP-1 in herpes simplex virus infected cells is dependent on the viral immediate-early protein ICPO. Nucleic Acids Res 19, 4879-4883. Jean, J. H., Ben-Porat, T., and Kaplan, A. S. (1974). Early functions of the genome of herpesvirus. 3. Inhibition of the transcription of the viral genome in cells treated with cycloheximide early during the infective process. Virology 59, 516-523. Johnson, D. C., and Huber, M. T. (2002). Directed egress of animal viruses promotes cell-to-cell spread. J Virol 76, 1-8. Jons, A., Dijkstra, J. M., and Mettenleiter, T. C. (1998). Glycoproteins M and N of pseudorabies virus form a disulfide-linked complex. J Virol 72, 550-557. Jons, A., Granzow, H., Kuchling, R., and Mettenleiter, T. C. (1996). The UL49.5 gene of pseudorabies virus codes for an O-glycosylated structural protein of the viral envelope. J Virol 70, 1237-1241. Kit, S., Kit, M., and Pirtle, E. C. (1985a). Attenuated properties of thymidine kinase-negative deletion mutant of pseudorabies virus. Am J Vet Res 46, 1359-1367. 67 Kit, S., Qavi, H., Gaines, J. D., Billingsley, P., and McConnell, S. (1985b). Thymidine kinase-negative bovine herpesvirus type 1 mutant is stable and highly attenuated in calves. Arch Virol 86, 63-83. Klupp, B. G., Baumeister, J., Dietz, P., Granzow, H., and Mettenleiter, T. C. (1998). Pseudorabies virus glycoprotein gK is a virion structural component involved in virus release but is not required for entry. J Virol 72, 1949-1958. Klupp, B. G., Baumeister, J., Karger, A., Visser, N., and Mettenleiter, T. C. (1994). Identification and characterization of a novel structural glycoprotein in pseudorabies virus, gL. J Virol 68, 3868-3878. Klupp, B. G., Fuchs, W., Weiland, E., and Mettenleiter, T. C. (1997). Pseudorabies virus glycoprotein L is necessary for virus infectivity but dispensable for virion localization of glycoprotein H. J Virol 71, 7687-7695. Klupp, B. G., and Mettenleiter, T. C. (1991). Sequence and expression of the glycoprotein gH gene of pseudorabies virus. Virology 182, 732-741. Kost, T. A., Jones, E. V., Smith, K. M., Reed, A. P., Brown, A. L., and Miller, T. J. (1989). Biological evaluation of glycoproteins mapping to two distinct mRNAs within the BamHI fragment 7 of pseudorabies virus: expression of the coding regions by vaccinia virus. Virology 171, 365-376. Lachmann, R. H., and Efstathiou, S. (1997). Utilization of the herpes simplex virus type 1 latency-associated regulatory region to drive stable reporter gene expression in the nervous system. J Virol 71, 3197-3207. Lokensgard, J. R., Thawley, D. G., and Molitor, T. W. (1990). Pseudorabies virus latency: restricted transcription. Arch Virol 110, 129-136. Lynas, C., Laycock, K. A., Cook, S. D., Hill, T. J., Blyth, W. A., and Maitland, N. J. (1989). Detection of herpes simplex virus type 1 gene expression in latently and productively infected mouse ganglia using the polymerase chain reaction. J Gen Virol 70 ( Pt 9), 2345-2355. Marchioli, C. C., Yancey, R. J., Jr., Petrovskis, E. A., Timmins, J. G., and Post, L. E. (1987). Evaluation of pseudorabies virus glycoprotein gp50 as a vaccine for Aujeszky''s disease in mice and swine: expression by vaccinia 68 virus and Chinese hamster ovary cells. J Virol 61, 3977-3982. Martin, K. J., Lillie, J. W., and Green, M. R. (1990). Transcriptional activation by the pseudorabies virus immediate early protein. Genes Dev 4, 2376-2382. Masse, M. J., Jons, A., Dijkstra, J. M., Mettenleiter, T. C., and Flamand, A. (1999). Glycoproteins gM and gN of pseudorabies virus are dispensable for viral penetration and propagation in the nervous systems of adult mice. J Virol 73, 10503-10507. McGeoch, D. J., Dalrymple, M. A., Davison, A. J., Dolan, A., Frame, M. C., McNab, D., Perry, L. J., Scott, J. E., and Taylor, P. (1988). The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J Gen Virol 69 ( Pt 7), 1531-1574. McGregor, S., Easterday, B. C., Kaplan, A. S., and Ben-Porat, T. (1985). Vaccination of swine with thymidine kinase-deficient mutants of pseudorabies virus. Am J Vet Res 46, 1494-1497. McLean, G., Rixon, F., Langeland, N., Haarr, L., and Marsden, H. (1990). Identification and characterization of the virion protein products of herpes simplex virus type 1 gene UL47. J Gen Virol 71 ( Pt 12), 2953-2960. Mettenleiter, T. C. (1989). Glycoprotein gIII deletion mutants of pseudorabies virus are impaired in virus entry. Virology 171, 623-625. Mettenleiter, T. C., Schreurs, C., Zuckermann, F., Ben-Porat, T., and Kaplan, A. S. (1988). Role of glycoprotein gIII of pseudorabies virus in virulence. J Virol 62, 2712-2717. Mettenleiter, T. C., Zsak, L., Zuckermann, F., Sugg, N., Kern, H., and Ben-Porat, T. (1990). Interaction of glycoprotein gIII with a cellular heparinlike substance mediates adsorption of pseudorabies virus. J Virol 64, 278-286. Moormann, R. J., de Rover, T., Briaire, J., Peeters, B. P., Gielkens, A. L., and van Oirschot, J. T. (1990). Inactivation of the thymidine kinase gene of a gI deletion mutant of pseudorabies virus generates a safe but still highly immunogenic vaccine strain. J Gen Virol 71 ( Pt 7), 1591-1595. 69 Moriuchi, H., Moriuchi, M., Dean, H., Cheung, A. K., and Cohen, J. I. (1995). Pseudorabies virus EPO is functionally homologous to varicella-zoster virus ORF61 protein and herpes simplex virus type 1 ICPO. Virology 209, 281-283. Moriuchi, H., Moriuchi, M., Smith, H. A., Straus, S. E., and Cohen, J. I. (1992). Varicella-zoster virus open reading frame 61 protein is functionally homologous to herpes simplex virus type 1 ICP0. J Virol 66, 7303-7308. Moriuchi, H., Moriuchi, M., Straus, S. E., and Cohen, J. I. (1993). Varicella-zoster virus open reading frame 10 protein, the herpes simplex virus VP16 homolog, transactivates herpesvirus immediate-early gene promoters. J Virol 67, 2739-2746. Mosca, J. D., Bednarik, D. P., Raj, N. B., Rosen, C. A., Sodroski, J. G., Haseltine, W. A., Hayward, G. S., and Pitha, P. M. (1987). Activation of human immunodeficiency virus by herpesvirus infection: identification of a region within the long terminal repeat that responds to a trans-acting factor encoded by herpes simplex virus 1. Proc Natl Acad Sci U S A 84, 7408-7412. Ober, B. T., Teufel, B., Wiesmuller, K. H., Jung, G., Pfaff, E., Saalmuller, A., and Rziha, H. J. (2000). The porcine humoral immune response against pseudorabies virus specifically targets attachment sites on glycoprotein gC. J Virol 74, 1752-1760. Parkinson, J., and Everett, R. D. (2000). Alphaherpesvirus proteins related to herpes simplex virus type 1 ICP0 affect cellular structures and proteins. J Virol 74, 10006-10017. Peeters, B., de Wind, N., Broer, R., Gielkens, A., and Moormann, R. (1992). Glycoprotein H of pseudorabies virus is essential for entry and cell-to-cell spread of the virus. J Virol 66, 3888-3892. Pellett, P. E., Je
摘要: 
假性狂犬病毒(Pseudorabies Virus; PRV)亦稱為猪第一型疱疹病毒,屬於阿爾法疱疹病毒亞科之ㄧ員,是一種具有封套的DNA 病毒。研究指出PRV 基因的表現是層階式的,依據其出現的順序可分為三類,分別是立即早期(immediate-early, IE)、早期(early, E)、及晚期基因(late, L),此三期基因依序出現且彼此調控。前人的實驗證實當猪隻受到 PRV 感染時,其輔助型 T 淋巴球會增加並且會促使IL-2 的分泌,但是關於其真正作用的詳細機轉目前仍不清楚,因此本實驗主要目的即是探討 PRV 對於猪IL-2(sIL-2)啟動子的調節機制。
本試驗首先以PCR 的方式得到全長為 2.2-kb 的 sIL-2 啟動子,接著再將之選殖到CAT 報導載體中。為了更進一步了解 sIL-2 啟動子的功能區域及DNA 的作用位置,我們依序由5’端進行刪除,產生五種不同長度的sIL-2 啟動子,並証實它們皆具有活性。接著再以 superinfection 的方式來探討 PRV 對這些啟動子的調控情形,結果發現在PRV 感染後的6 小時,五種不同長度的sIL-2 啟動子活性皆有明顯增加的趨勢,在12 小時的效果最明顯。之後,我們想更近一步了解此種情形是受病毒哪個時期的基因調控,因此使用了不同的抑制劑來觀察,分別是Phosphonoacetic acid (PAA:抑制DNA合成)、Actinomycin D (AD: 抑制transcription)、及cycloheximide (CHX: 抑制蛋白質合成)。由於病毒IE 蛋白產生並不需要任何病毒蛋白的參與,因此當PAA 及AD 存在時並不會抑制IE 蛋白的合成,但若加入蛋白質抑制劑CHX 時,則病毒IE 蛋白不會產生。結果顯示,當PAA 及AD 存在時,PRV 仍然可以造成sIL-2 啟動子活化,而當CHX 存在時,PRV 則無法活化sIL-2 啟動子,由此結果推測PRV 可能會藉由IE蛋白來調控sIL-2 啟動子。為了更近一步證實此假說,我們將含有五種不同長度sIL-2 啟動子之報導載體分別與含PRV IE180 或EP0 的真核表現載體,利用 LMtk-細胞進行 transient cotransfection,以CAT assay 來進行分析IE180 與EP0 對這些啟動子的調控情形。結果顯示低劑量的IE180 與EP0確實會活化sIL-2 啟動子,但當濃度增加後,則反而有抑制的現象。综合以上結果可知 PRV 會藉由IE180 及EP0 蛋白來調節sIL-2 啟動子,而且此種調控並不受IE like binding site、NF AT、及TFIID 等transcription factorbinding site 的影響,故推測PRV 可能會藉由其他途徑來活化sIL-2 啟動子。

Pseudorabies virus (PRV) is a swine alphaherpesvirus that can cause Aujeszky,s disease. Previous reports indicated that the PRV transcription is regulated in a cascade-like fashion. The genes are classified into three kinetic classes in viral lytic infection: immediate-early (IE), early (E), and late (L). In previous study it was demonstrated that the PRV can stimulate T helper lymphocytes to secrete IL-2 in vitro, but the regulation of the IL-2 activation pathway is still not very clear. In this study, we explored the molecular mechanism of swine IL-2 (sIL-2) promoter regulation. The sIL-2 promoter region of 2.2-kb in length was generated by PCR and was subcloned into a CAT reporter vector. To identify the DNA response element, functional promoter assay with progressively 5'deleted sIL-2 promoter fragments was performed. In a superinfection assay, we transfected various sIL-2 promoter reporter plasmids into LMtk- cells, the results showed that PRV infection could enhance the activity of five different sIL-2 promoters at 6 h postinduction. When the sIL-2 promoter was co-transfected with PRV IE180 or EP0 expression vector, it showed that a low concentration of IE 180 or EP0 could enhance activity of sIL-2 promoter whereas were suppressed by a high dose of IE 180 or EP0. In summary, we demonstrated that the sIL-2 promoter could be regulated by the IE180 or EP0 of PRV.
URI: http://hdl.handle.net/11455/66417
其他識別: U0005-0108200812190300
Appears in Collections:微生物暨公共衛生學研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.