Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/66471
標題: 大腸桿菌表現之傳染性華氏囊病病毒VP243蛋白應用於四種ELISA之研發
Development of four types of ELISAs coating E. coli expressed VP243 for detecting antibody against infectious bursal disease virus
作者: 顏竹君
Yen, Chu-Chun
關鍵字: 傳染性華氏囊病病毒;IBDV;酵素連結免疫吸附分析法;ELISA
出版社: 微生物暨公共衛生學研究所
引用: 1. 朱廣中, 2010. 雞傳染性華氏囊病及傳染性支氣管炎雙價疫苗之研發. 國立中興大學碩士論文. 2. Anderson, W.I., Reid, W.M., Lukert, P.D., Fletcher, O.J., Jr., 1977. Influence of infectious bursal disease on the development of immunity to Eimeria tenella. Avian Dis 21, 637-641. 3. Azad, A.A., Barrett, S.A., Fahey, K.J., 1985. The characterization and molecular cloning of the double-stranded RNA genome of an Australian strain of infectious bursal disease virus. Virology 143, 35-44. 4. Bayliss, C.D., Peters, R.W., Cook, J.K., Reece, R.L., Howes, K., Binns, M.M., Boursnell, M.E., 1991. A recombinant fowlpox virus that expresses the VP2 antigen of infectious bursal disease virus induces protection against mortality caused by the virus. Arch Virol 120, 193-205. 5. Bayliss, C.D., Spies, U., Shaw, K., Peters, R.W., Papageorgiou, A., Muller, H., Boursnell, M.E., 1990. A comparison of the sequences of segment A of four infectious bursal disease virus strains and identification of a variable region in VP2. J Gen Virol 71 ( Pt 6), 1303-1312. 6. Bentley, W.E., Wang, M.Y., Vakharia, V., 1994. Development of an efficient bioprocess for poultry vaccines using high-density insect cell culture. Ann N Y Acad Sci 745, 336-359. 7. Benton, W.J., Cover, M.S., Rosenberger, J.K., Lake, R.S., 1967. Physicochemical properties of the infectious bursal agent (IBA). Avian Dis 11, 438-445. 8. Bottcher, B., Kiselev, N.A., Stel''Mashchuk, V.Y., Perevozchikova, N.A., Borisov, A.V., Crowther, R.A., 1997. Three-dimensional structure of infectious bursal disease virus determined by electron cryomicroscopy. Journal of virology 71, 325-330. 9. Brown, F., 1986. The classification and nomenclature of viruses: summary of results of the meeting so the International Committee on Taxonomy of Viruses in Sendai. Intervirology 25, 141-143. 10. Brown, M.D., Green, P., Skinner, M.A., 1994. VP2 sequences of recent European ''very virulent'' isolates of infectious bursal disease virus are closely related to each other but are distinct from those of ''classical'' strains. J Gen Virol 75 ( Pt 3), 675-680. 11. Bumstead, N., Reece, R.L., Cook, J.K., 1993. Genetic differences in susceptibility of chicken lines to infection with infectious bursal disease virus. Poult Sci 72, 403-410. 12. Caston, J.R., Martinez-Torrecuadrada, J.L., Maraver, A., Lombardo, E., Rodriguez, J.F., Casal, J.I., Carrascosa, J.L., 2001. C terminus of infectious bursal disease virus major capsid protein VP2 is involved in definition of the T number for capsid assembly. J Virol 75, 10815-10828. 13. Cereghino, G.P., Cereghino, J.L., Ilgen, C., Cregg, J.M., 2002. Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr Opin Biotechnol 13, 329-332. 14. Cereghino, J.L., Cregg, J.M., 2000. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24, 45-66. 15. Cosgrove, A.S., 1962. An apparently new disease of chickens-avian nephrosis. Avian Diseases 6, 385-389. 16. Coulibaly, F., Chevalier, C., Gutsche, I., Pous, J., Navaza, J., Bressanelli, S., Delmas, B., Rey, F.A., 2005. The birnavirus crystal structure reveals structural relationships among icosahedral viruses. Cell 120, 761-772. 17. de Wit, J.J., van de Sande, H.W., Counotte, G.H., Wellenberg, G.J., 2007. Analyses of the results of different test systems in the 2005 global proficiency testing schemes for infectious bursal disease virus and Newcastle disease virus antibody detection in chicken serum. Avian pathology : journal of the W.V.P.A 36, 177-183. 18. Dey, S., Upadhyay, C., Madhan Mohan, C., Kataria, J.M., Vakharia, V.N., 2009. Formation of subviral particles of the capsid protein VP2 of infectious bursal disease virus and its application in serological diagnosis. Journal of virological methods 157, 84-89. 19. Engvall, E., Perlmann, P., 1971. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry 8, 871-874. 20. Galloux, M., Libersou, S., Morellet, N., Bouaziz, S., Da Costa, B., Ouldali, M., Lepault, J., Delmas, B., 2007. Infectious bursal disease virus, a non-enveloped virus, possesses a capsid-associated peptide that deforms and perforates biological membranes. The Journal of biological chemistry 282, 20774-20784. 21. Giambrone, J.J., Eidson, C.S., Page, R.K., Fletcher, O.J., Barger, B.O., Kleven, S.H., 1976. Effect of infectious bursal agent on the response of chickens to Newcastle disease and Marek''s disease vaccination. Avian Dis 20, 534-544. 22. Greiner, M., Pfeiffer, D., Smith, R.D., 2000. Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests. Preventive veterinary medicine 45, 23-41. 23. Henry, C.W., Brewer, R.N., Edgar, S.A., Gray, B.W., 1980. Studies on infectious bursal disease in chickens. 2. Scoring microscopic lesions in the bursa of fabricius, thymus, spleen, and kidney in gnotobiotic and battery reared White Leghorns experimentally infected with infectious bursal disease virus. Poultry science 59, 1006-1017. 24. Hernandez, M., Villegas, P., Hernandez, D., Banda, A., Maya, L., Romero, V., Tomas, G., Perez, R., 2010. Sequence variability and evolution of the terminal overlapping VP5 gene of the infectious bursal disease virus. Virus genes 41, 59-66. 25. Irigoyen, N., Garriga, D., Navarro, A., Verdaguer, N., Rodriguez, J.F., Caston, J.R., 2009. Autoproteolytic activity derived from the infectious bursal disease virus capsid protein. The Journal of biological chemistry 284, 8064-8072. 26. Islam, M.R., Zierenberg, K., Muller, H., 2001. The genome segment B encoding the RNA-dependent RNA polymerase protein VP1 of very virulent infectious bursal disease virus (IBDV)is phylogenetically distinct from that of all other IBDV strains. Arch Virol 146, 2481-2492. 27. Jackwood, D.J., Hanes, G., Miller, S.H., 1996. Infectious bursal disease viral RNA amplification using RT/PCR from bursa tissue following phenol: chloroform inactivation of the virus. Avian Dis 40, 457-460. 28. Jackwood, D.J., Saif, Y.M., Moorhead, P.D., 1985. Immunogenicity and antigenicity of infectious bursal disease virus serotypes I and II in chickens. Avian Dis 29, 1184-1194. 29. Jagadish, M.N., Laughton, D.L., Azad, A.A., Macreadie, I.G., 1991. Stable synthesis of viral protein 2 of infectious bursal disease virus in Saccharomyces cerevisiae. Gene 108, 275-279. 30. Kochan, G., Gonzalez, D., Rodriguez, J.F., 2003. Characterization of the RNA-binding activity of VP3, a major structural protein of Infectious bursal disease virus. Arch Virol 148, 723-744. 31. Leff, R.L., Miller, F.W., Hicks, J., Fraser, D.D., Plotz, P.H., 1993. The treatment of inclusion body myositis: a retrospective review and a randomized, prospective trial of immunosuppressive therapy. Medicine (Baltimore)72, 225-235. 32. Lejal, N., Da Costa, B., Huet, J.C., Delmas, B., 2000. Role of Ser-652 and Lys-692 in the protease activity of infectious bursal disease virus VP4 and identification of its substrate cleavage sites. J Gen Virol 81, 983-992. 33. Lokkegaard, T., Nielsen, J.E., Hasholt, L., Fenger, K., Werdelin, L., Tranebjaerg, L., Lauritzen, M., Colding-Jorgensen, E., Gronbech-Jensen, M., Henriksen, O.A., Sorensen, S.A., 1998. Machado-Joseph disease in three Scandinavian families. J Neurol Sci 156, 152-157. 34. Lombardo, E., Maraver, A., Caston, J.R., Rivera, J., Fernandez-Arias, A., Serrano, A., Carrascosa, J.L., Rodriguez, J.F., 1999. VP1, the putative RNA-dependent RNA polymerase of infectious bursal disease virus, forms complexes with the capsid protein VP3, leading to efficient encapsidation into virus-like particles. J Virol 73, 6973-6983. 35. Luque, D., Saugar, I., Rodriguez, J.F., Verdaguer, N., Garriga, D., Martin, C.S., Velazquez-Muriel, J.A., Trus, B.L., Carrascosa, J.L., Caston, J.R., 2007. Infectious bursal disease virus capsid assembly and maturation by structural rearrangements of a transient molecular switch. Journal of virology 81, 6869-6878. 36. Macreadie, I.G., Azad, A.A., 1991. Internal initiation and frameshifting in infectious bursal disease virus sequence expressed in Escherichia coli. Virology 184, 773-776. 37. Macreadie, I.G., Vaughan, P.R., Chapman, A.J., McKern, N.M., Jagadish, M.N., Heine, H.G., Ward, C.W., Fahey, K.J., Azad, A.A., 1990. Passive protection against infectious bursal disease virus by viral VP2 expressed in yeast. Vaccine 8, 549-552. 38. Maraver, A., Clemente, R., Rodriguez, J.F., Lombardo, E., 2003a. Identification and molecular characterization of the RNA polymerase-binding motif of infectious bursal disease virus inner capsid protein VP3. J Virol 77, 2459-2468. 39. Maraver, A., Ona, A., Abaitua, F., Gonzalez, D., Clemente, R., Ruiz-Diaz, J.A., Caston, J.R., Pazos, F., Rodriguez, J.F., 2003b. The oligomerization domain of VP3, the scaffolding protein of infectious bursal disease virus, plays a critical role in capsid assembly. J Virol 77, 6438-6449. 40. Marquardt WW, Johnson RB, Odenwald WF, BA., S., 1980. An indirect enzyme-linked immunosorbent assay (ELISA)for measuring antibodies in chickens infected with infectious bursal disease virus. Avian Diseases 24. 41. Martinez-Torrecuadrada, J.L., Lazaro, B., Rodriguez, J.F., Casal, J.I., 2000. Antigenic properties and diagnostic potential of baculovirus-expressed infectious bursal disease virus proteins VPX and VP3. Clinical and diagnostic laboratory immunology 7, 645-651. 42. McFerran, J.B., McNulty, M.S., McKillop, E.R., Connor, T.J., McCracken, R.M., Collins, D.S., Allan, G.M., 1980. Isolation and serological studies with infectious bursal disease viruses from fowl, turkeys and ducks: demonstration of a second serotype. Avian pathology : journal of the W.V.P.A 9, 395-404. 43. Meulemans, G., Halen, P., 1982. Efficacy of some disinfectants against infectious bursal disease virus and avian reovirus. Vet Rec 111, 412-413. 44. Moir, D.T., Dumais, D.R., 1987. Glycosylation and secretion of human alpha-1-antitrypsin by yeast. Gene 56, 209-217. 45. Muller, H., Becht, H., 1982. Biosynthesis of virus-specific proteins in cells infected with infectious bursal disease virus and their significance as structural elements for infectious virus and incomplete particles. J Virol 44, 384-392. 46. Ozel, M., Gelderblom, H., 1985. Capsid symmetry of viruses of the proposed Birnavirus group. Arch Virol 84, 149-161. 47. Petek, M., D''Aprile, P.N., Cancellotti, F., 1973. Biological and physico-chemical properties of the infectious bursal disease virus (IBDV). Avian Pathol 2, 135-152. 48. Pitcovski, J., Di-Castro, D., Shaaltiel, Y., Azriel, A., Gutter, B., Yarkoni, E., Michael, A., Krispel, S., Levi, B.Z., 1996. Insect cell-derived VP2 of infectious bursal disease virus confers protection against the disease in chickens. Avian Dis 40, 753-761. 49. Prabakaran, M., Ho, H.T., Prabhu, N., Velumani, S., Szyporta, M., He, F., Chan, K.P., Chen, L.M., Matsuoka, Y., Donis, R.O., Kwang, J., 2009. Development of epitope-blocking ELISA for universal detection of antibodies to human H5N1 influenza viruses. PloS one 4, e4566. 50. Rautenschlein, S., Yeh, H.Y., Sharma, J.M., 2003. Comparative immunopathogenesis of mild, intermediate, and virulent strains of classic infectious bursal disease virus. Avian Dis 47, 66-78. 51. Rogel, A., Benvenisti, L., Sela, I., Edelbaum, O., Tanne, E., Shachar, Y., Zanberg, Y., Gontmakher, T., Khayat, E., and Stram, Y. (2003). Vaccination with E. coli recombinant empty viral particles of infectious bursal disease virus (IBDV)confer protection. Virus Genes 27(2), 169-75. 52. Saif, Y.M., 1991. Immunosuppression induced by infectious bursal disease virus. Veterinary immunology and immunopathology 30, 45-50. 53. Sharma, J.M., Dohms, J.E., Metz, A.L., 1989. Comparative pathogenesis of serotype 1 and variant serotype 1 isolates of infectious bursal disease virus and their effect on humoral and cellular immune competence of specific-pathogen-free chickens. Avian Dis 33, 112-124. 54. Singh, N.K., Dey, S., Madhan Mohan, C., Mohan Kataria, J., Vakharia, V.N., 2010. Evaluation of four enzyme linked immunosorbent assays for the detection of antibodies to infectious bursal disease in chickens. Journal of virological methods 165, 277-282. 55. Smith, G.E., Summers, M.D., Fraser, M.J., 1983. Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol 3, 2156-2165. 56. Snyder, D.B., 1990. Changes in the field status of infectious bursal disease virus. Avian Pathol 19, 419-423. 57. Strickland, R.G., Miller, W.C., Volpicelli, N.A., Gaeke, R.F., Wilson, I.D., Kirsner, J.B., Williams, R.C., Jr., 1977. Lymphocytotoxic antibodies in patients with inflammatory bowel disease and their spouses--evidence for a transmissible agent. Clinical and experimental immunology 30, 188-192. 58. Swets, J.A., 1988. Measuring the accuracy of diagnostic systems. Science 240, 1285-1293. 59. Vakharia, V.N., Snyder, D.B., He, J., Edwards, G.H., Savage, P.K., Mengel-Whereat, S.A., 1993. Infectious bursal disease virus structural proteins expressed in a baculovirus recombinant confer protection in chickens. J Gen Virol 74 ( Pt 6), 1201-1206. 60. van den Berg, T.P., Gonze, M., Meulemans, G., 1991. Acute infectious bursal disease virus in poultry: isolation and characterization of a highly virulent strain. Avian Pathol 20, 133– 143. 61. Wang, M.-Y., Hu, H.-L., Suen, S.-Y., Chiu, F.-Y., Shien, J.-H., Lai, S.-Y., 2008. Development of an enzyme-linked immunosorbent assay for detecting infectious bursal disease virus (IBDV)infection based on the VP3 structural protein. Veterinary Microbiology 131, 229-236. 62. Wu, C.C., Rubinelli, P., Lin, T.L., 2007. Molecular detection and differentiation of infectious bursal disease virus. Avian Dis 51, 515-526. 63. Wu, P.C., Su, H.Y., Lee, L.H., Lin, D.T., Yen, P.C., Liu, H.J., 2005. Secreted expression of the VP2 protein of very virulent infectious bursal disease virus in the methylotrophic yeast Pichia pastoris. Journal of virological methods 123, 221-225. 64. Zhou, E.M., Chan, M., McIsaac, M., Heckert, R.A., 1998. Evaluation of antibody responses of emus (Dromaius novaehollandiae)to avian influenza virus infection. Avian Dis 42, 757-761.
摘要: 
傳染性華氏囊病病毒 (Infection bursal disease virus;IBDV) 具有高度傳染性且造成年幼雞隻免疫力下降,而目前常以酵素連結免疫吸附分析法 (enzyme linked immunosorbant assay; ELISA) 方式來診斷此疾病。傳統上以IBDV全病毒ELISA來檢測,因先前研究指出重組VP243可形成類病毒顆粒 (virus like particle; VLP),故本實驗以原核系統E. coli表現重組的IBDV多蛋白VP243當作抗原應用於ELISA之檢測上。實驗檢測206隻野外雞隻血清,並以商品化之IDEXX IBD ELISA檢測結果當作黃金標準。將自製VP243-ELISA分為間接型 (Indirect) ELISA、三明治型 (Sandwich) ELISA、阻斷型 (Blocking) ELISA,其中間接型ELISA依VP243純化方式不同分為以Ni-NTA純化及以氯化銫 (CsCl) 密度梯度離心純化;而三明治型、阻斷型ELISA則以未純化的VP243可溶蛋白當作抗原,並配合市售的Anti-VP2單株抗體之應用,此四種ELISA分別簡稱為Ni-NTA VP243-ELISA、CsCl VP243-ELISA、VP243 Sandwich ELISA、VP243 Blocking ELISA。本實驗以兩種裁切點判定方式,傳統上非同源陰性血清平均值加上標準差當作截切點,和以Two-graph receiver operating characteristic (TG-ROC) 選擇之截切點,並比較其ELISA之結果。結果顯示Ni-NTA VP243-ELISA以血清平均值加上標準差當做截切點時,當加上12個標準差時其敏感性、特異性及準確率分別為99.2%、93.83%及97.09%,而當以TG-ROC判定截切點時其敏感性、特異性及準確率分別為97.6%、95.06%及96.6%,且ROC曲線下面積 (area under the ROC curve; AUC) 達0.99表示其為判別力良好的檢測方式,而且Ni-NTA VP243-ELISA具有比其他三種ELISA較高之敏感性、特異性、準確率。整體而言Ni-NTA VP243-ELISA是有效檢測方式且成本低廉操作簡便,可應用於未來檢測IBDV的診斷。

Infection bursal disease virus (IBDV) causes a highly contagious disease and induces immunosuppression in young chickens. The enzyme-linked immunesorbent assay (ELISA)was commonly used in the field to evaluate the efficiency of IBD vaccination and monitor the infection of IBDV. The commercial IBD ELISA was based on the use of whole virus as the antigens. The researches have demonstrated that the recombinant VP243 could form virus-like particles (VLPs), therefore, the objective of this study was to develop different types of ELISAs using E. coli expressed VP243 as coating antigen for detection of antibody against IBDV. In-house VP243-ELISAs including two indirect ELISAs, sandwich ELISA and blocking ELISA were compared with commercial IDEXX IBD ELISA. The indirect ELISA was coated with the Ni-NTA-purified VP243 or CsCl purified VP243. The sandwich ELISA was coated with the commercial anti-VP2 monoclonal antibody to capture the soluble VP243 from the E. coli lysate. The blocking ELISA was coated with the soluble VP243 from the E. coli lysate and detected by the commercial anti-VP2 monoclonal antibody. These four types of VP243-ELISA were in short for Ni-NTA VP243-ELISA, CsCl VP243-ELISA, VP243 sandwich ELISA and VP243 Blocking ELISA. Total 206 sera from field were used for the evaluation and the commercial IDEXX IBD ELISA coated with whole virus was used as gold standard method. The cut-off values were determined by mean plus standard deviations or the two-graph receiver operation characteristics (TG-ROC). When the Ni-NTA VP243-ELISA cut-off value was set on that mean plus 12 standard deviations, the sensitivity, specificity and accuracy were 99.2%, 93.83% and 97.09%, respectively. When the cut-off value was determined by TG-ROC, the sensitivity, specificity and accuracy were 97.6%, 95.06% and 96.6%, respectively. Moreover, the area under the ROC curve (AUC) of the Ni-NTA VP243-ELISA was 0.99, indicating that this test is a highly efficient method. The results showed that Ni-NTA VP243-ELISA had higher sensitivity, specificity and accuracy than those in other VP243-ELISAs. Therefore, Ni-NTA VP243-ELISA was demonstrated to be an effective and economical ELISA for detection of IBDV infection.
URI: http://hdl.handle.net/11455/66471
其他識別: U0005-1908201200282300
Appears in Collections:微生物暨公共衛生學研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.