Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/66472
標題: 大腸桿菌表現雞傳染性華氏囊病類病毒顆粒產量及保護效力之提升
Enhancement of the production and protection efficiency of IBDV virus like particle expressed in E. coli
作者: 廖君儀
Liao, Jung-Yi
關鍵字: 雞傳染性華氏囊病;Infectious Bursal Disease Virus;類病毒顆粒;大腸桿菌;Virus like particle;E. coli
出版社: 微生物暨公共衛生學研究所
引用: 朱廣中, 2010. 雞傳染性華氏囊病及傳染性支氣管炎雙價疫苗之研發, Graduate Institute of Microbiology and Public Health. National Chung Hsing University. 陳宜暉, 2006. 利用點突變探討傳染性華氏囊病病毒 VP2蛋白中His249與His253對於IBDV 次病毒顆粒與固定化金屬親和性管柱親和力之重要性, Graduate Institute of Biotechnology. National Chung Hsing University. 蔡向榮,呂榮修, 1993. 台灣雞傳染性華氏囊病大流行之疫情分析. 中華獸醫誌 19, 249-258. Aucouturier, J., Dupuis, L., Ganne, V., 2001. Adjuvants designed for veterinary and human vaccines. Vaccine 19, 2666-2672. Azad, A.A., Barrett, S.A., Fahey, K.J., 1985. The characterization and molecular cloning of the double-stranded RNA genome of an Australian strain of infectious bursal disease virus. Virology 143, 35-44. Azad, A.A., Jagadish, M.N., Brown, M.A., Hudson, P.J., 1987. Deletion mapping and expression in Escherichia coli of the large genomic segment of a birnavirus. Virology 161, 145-152. Bayliss, C.D., Spies, U., Shaw, K., Peters, R.W., Papageorgiou, A., Muller, H., Boursnell, M.E., 1990. A comparison of the sequences of segment A of four infectious bursal disease virus strains and identification of a variable region in VP2. J Gen Virol 71 ( Pt 6), 1303-1312. Ben Abdeljelil, N., Khabouchi, N., Mardassi, H., 2008. Efficient rescue of infectious bursal disease virus using a simplified RNA polymerase II-based reverse genetics strategy. Arch Virol 153, 1131-1137. Benton, W.J., Cover, M.S., Rosenberger, J.K., Lake, R.S., 1967. Physicochemical properties of the infectious bursal agent (IBA). Avian Dis 11, 438-445. Berg, T.P., 2000. Acute infectious bursal disease in poultry: a review. Avian Pathol 29, 175-194. Bessette, P.H., Aslund, F., Beckwith, J., Georgiou, G., 1999. Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc Natl Acad Sci U S A 96, 13703-13708. Beug, H., Muller, H., Grieser, S., Doederlein, G., Graf, T., 1981. Hematopoietic cells transformed in vitro by REVT avian reticuloendotheliosis virus express characteristics of very immature lymphoid cells. Virology 115, 295-309. Birghan, C., Mundt, E., Gorbalenya, A.E., 2000. A non-canonical lon proteinase lacking the ATPase domain employs the ser-Lys catalytic dyad to exercise broad control over the life cycle of a double-stranded RNA virus. EMBO J 19, 114-123. Block, H., Meyer-Block, K., Rebeski, D.E., Scharr, H., de Wit, S., Rohn, K., Rautenschlein, S., 2007. A field study on the significance of vaccination against infectious bursal disease virus (IBDV) at the optimal time point in broiler flocks with maternally derived IBDV antibodies. Avian Pathol 36, 401-409. Bottcher, B., Kiselev, N.A., Stel''Mashchuk, V.Y., Perevozchikova, N.A., Borisov, A.V., Crowther, R.A., 1997. Three-dimensional structure of infectious bursal disease virus determined by electron cryomicroscopy. J Virol 71, 325-330. Brown, M.D., Green, P., Skinner, M.A., 1994. VP2 sequences of recent European ''very virulent'' isolates of infectious bursal disease virus are closely related to each other but are distinct from those of ''classical'' strains. J Gen Virol 75 ( Pt 3), 675-680. Caston, J.R., Martinez-Torrecuadrada, J.L., Maraver, A., Lombardo, E., Rodriguez, J.F., Casal, J.I., Carrascosa, J.L., 2001. C terminus of infectious bursal disease virus major capsid protein VP2 is involved in definition of the T number for capsid assembly. J Virol 75, 10815-10828. Chen, R., 2012. Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnol Adv 30, 1102-1107. Chettle, N.J., Eddy, R.K., Wyeth, P.J., Lister, S.A., 1989. An outbreak of disease due to chicken anaemia agent in broiler chickens in England. The Vet Rec 124, 211-215. Chevalier, C., Galloux, M., Pous, J., Henry, C., Denis, J., Da Costa, B., Navaza, J., Lepault, J., Delmas, B., 2005. Structural peptides of a nonenveloped virus are involved in assembly and membrane translocation. J Virol 79, 12253-12263. Chevalier, C., Lepault, J., Da Costa, B., Delmas, B., 2004. The last C-terminal residue of VP3, glutamic acid 257, controls capsid assembly of infectious bursal disease virus. J Virol 78, 3296-3303. Cosgrove, A.S., 1962. An Apparently New Disease of Chickens: Avian Nephrosis. Avian Dis 6, 385-389. Coulibaly, F., Chevalier, C., Gutsche, I., Pous, J., Navaza, J., Bressanelli, S., Delmas, B., Rey, F.A., 2005. The birnavirus crystal structure reveals structural relationships among icosahedral viruses. Cell 120, 761-772. Da Costa, B., Chevalier, C., Henry, C., Huet, J.C., Petit, S., Lepault, J., Boot, H., Delmas, B., 2002. The Capsid of Infectious Bursal Disease Virus Contains Several Small Peptides Arising from the Maturation Process of pVP2. J Virol 76, 2393-2402. Donly, B.C., Edgar, C.D., Adamski, F.M., Tate, W.P., 1990. Frameshift autoregulation in the gene for Escherichia coli release factor 2: partly functional mutants result in frameshift enhancement. Nucleic Acids Res 18, 6517-6522. Dupuis, L., Ascarateil, S., Aucouturier, J., Ganne, V., 2006. SEPPIC vaccine adjuvants for poultry. Ann N Y Acad Sci 1081, 202-205. Eterradossi, N., Arnauld, C., Toquin, D., Rivallan, G., 1998. Critical amino acid changes in VP2 variable domain are associated with typical and atypical antigenicity in very virulent infectious bursal disease viruses. Arch Virol 143, 1627-1636. Hernandez, M., Villegas, P., Hernandez, D., Banda, A., Maya, L., Romero, V., Tomas, G., Perez, R., 2010. Sequence variability and evolution of the terminal overlapping VP5 gene of the infectious bursal disease virus. Virus Genes 41, 59-66. Hirai, K., Calnek, B.W., 1979. In vitro replication of infectious bursal disease virus in established lymphoid cell lines and chicken B lymphocytes. Infect Immun 25, 964-970. Hirai, K., Funakoshi, T., Nakai, T., Shimakura, S., 1981. Sequential changes in the number of surface immunoglobulin-bearing B lymphocytes in infectious bursal disease virus-infected chickens. Avian Dis 25, 484-496. Hu, Y.C., Bentley, W.E., Edwards, G.H., Vakharia, V.N., 1999. Chimeric infectious bursal disease virus-like particles expressed in insect cells and purified by immobilized metal affinity chromatography. Biotechnol Bioeng 63, 721-729. Ingrao, F., Rauw, F., Lambrecht, B., van den Berg, T., 2013. Infectious Bursal Disease: A complex host-pathogen interaction. Dev Comp Immunol. Inoue, M., Fukuda, M., Miyano, K., 1994. Thymic lesions in chicken infected with infectious bursal disease virus. Avian Dis 38, 839-846. Irigoyen, N., Caston, J.R., Rodriguez, J.F., 2012. Host proteolytic activity is necessary for infectious bursal disease virus capsid protein assembly. J Biol Chem 287, 24473-24482. Irigoyen, N., Garriga, D., Navarro, A., Verdaguer, N., Rodriguez, J.F., Caston, J.R., 2009. Autoproteolytic activity derived from the infectious bursal disease virus capsid protein. J Biol Chem 284, 8064-8072. Islam, M.R., Zierenberg, K., Eterradossi, N., Toquin, D., Rivallan, G., Muller, H., 2001. Molecular and antigenic characterization of Bangladeshi isolates of infectious bursal disease virus demonstrate their similarities with recent European, Asian and African very virulent strains. J Vet Med B Infect Dis Vet Public Health 48, 211-221. Jackwood, D.H., Saif, Y.M., 1987. Antigenic diversity of infectious bursal disease viruses. Avian Dis 31, 766-770. Jackwood, D.J., 2013. Multivalent Virus-Like–Particle Vaccine Protects Against Classic and Variant Infectious Bursal Disease Viruses. Avian Dis 57, 41-50. Jackwood, D.J., Sommer, S.E., 1999. Restriction fragment length polymorphisms in the VP2 gene of infectious bursal disease viruses from outside the United States. Avian Dis 43, 310-314. Jagadish, M.N., Staton, V.J., Hudson, P.J., Azad, A.A., 1988. Birnavirus precursor polyprotein is processed in Escherichia coli by its own virus-encoded polypeptide. J Virol 62, 1084-1087. Jang, S.I., Lillehoj, H.S., Lee, S.H., Lee, K.W., Lillehoj, E.P., Bertrand, F., Dupuis, L., Deville, S., 2011. Montanide ISA 71 VG adjuvant enhances antibody and cell-mediated immune responses to profilin subunit antigen vaccination and promotes protection against Eimeria acervulina and Eimeria tenella. Exp Parasitol 127, 178-183. Jang, S.I., Lillehoj, H.S., Lee, S.H., Lee, K.W., Lillehoj, E.P., Hong, Y.H., An, D.J., Jeong, W., Chun, J.E., Bertrand, F., Dupuis, L., Deville, S., Arous, J.B., 2012. Vaccination with Clostridium perfringens recombinant proteins in combination with Montanide ISA 71 VG adjuvant increases protection against experimental necrotic enteritis in commercial broiler chickens. Vaccine 30, 5401-5406. Kibenge, F.S., Qian, B., Cleghorn, J.R., Martin, C.K., 1997. Infectious bursal disease virus polyprotein processing does not involve cellular proteases. Arch Virol 142, 2401-2419. Kibenge, F.S., Qian, B., Nagy, E., Cleghorn, J.R., Wadowska, D., 1999. Formation of virus-like particles when the polyprotein gene (segment A) of infectious bursal disease virus is expressed in insect cells. Can J Vet Res 63, 49-55. Krzeslak, J., Braun, P., Voulhoux, R., Cool, R.H., Quax, W.J., 2009. Heterologous production of Escherichia coli penicillin G acylase in Pseudomonas aeruginosa. J Biotechnol 142, 250-258. Lee, C.C., Ko, T.P., Chou, C.C., Yoshimura, M., Doong, S.R., Wang, M.Y., Wang, A.H., 2006. Crystal structure of infectious bursal disease virus VP2 subviral particle at 2.6A resolution: implications in virion assembly and immunogenicity. J Struct Biol 155, 74-86. Lejal, N., Da Costa, B., Huet, J.C., Delmas, B., 2000. Role of Ser-652 and Lys-692 in the protease activity of infectious bursal disease virus VP4 and identification of its substrate cleavage sites. J Gen Virol 81, 983-992. Lin, T.W., Lo, C.W., Lai, S.Y., Fan, R.J., Lo, C.J., Chou, Y.M., Thiruvengadam, R., Wang, A.H., Wang, M.Y., 2007. Chicken heat shock protein 90 is a component of the putative cellular receptor complex of infectious bursal disease virus. J Virol 81, 8730-8741. Lombardo, E., Maraver, A., Espinosa, I., Fernandez-Arias, A., Rodriguez, J.F., 2000. VP5, the nonstructural polypeptide of infectious bursal disease virus, accumulates within the host plasma membrane and induces cell lysis. Virology 277, 345-357. Lukert, P.D., Saif, Y.M., 2003. Infectious bursal disease. Iowa State University Press Ames pp. 161-180. Luque, D., Saugar, I., Rejas, M.T., Carrascosa, J.L., Rodriguez, J.F., Caston, J.R., 2009. Infectious Bursal disease virus: ribonucleoprotein complexes of a double-stranded RNA virus. J Mol Biol 386, 891-901. Luque, D., Saugar, I., Rodriguez, J.F., Verdaguer, N., Garriga, D., Martin, C.S., Velazquez-Muriel, J.A., Trus, B.L., Carrascosa, J.L., Caston, J.R., 2007. Infectious bursal disease virus capsid assembly and maturation by structural rearrangements of a transient molecular switch. J Virol 81, 6869-6878. Lutticken, D., 1997. Viral diseases of the immune system and strategies to control infectious bursal disease by vaccination. Acta Vet Hung 45, 239-249. Müller, H., Islam, M.R., Raue, R., 2003. Research on infectious bursal disease—the past, the present and the future. Vet Microbiol 97, 153-165. Maas, R., Venema, S., Kant, A., Oei, H., Claassen, I., 2004. Quantification of infectious bursal disease viral proteins 2 and 3 in inactivated vaccines as an indicator of serological response and measure of potency. Avian Pathol 33, 126-132. Maas, R.A., de Winter, M.P., Venema, S., Oei, H.L., Claassen, I.J., 2000. Antigen quantification as in vitro alternative for potency testing of inactivated viral poultry vaccines. Vet Q 22, 223-227. Maclachlan, N.J., Dubovi, E.J., 2011. Fenner''s Veterinary Virology. pp. 293-298. Maraver, A., Clemente, R., Rodriguez, J.F., Lombardo, E., 2003a. Identification and molecular characterization of the RNA polymerase-binding motif of infectious bursal disease virus inner capsid protein VP3. J Virol 77, 2459-2468. Maraver, A., Ona, A., Abaitua, F., Gonzalez, D., Clemente, R., Ruiz-Diaz, J.A., Caston, J.R., Pazos, F., Rodriguez, J.F., 2003b. The oligomerization domain of VP3, the scaffolding protein of infectious bursal disease virus, plays a critical role in capsid assembly. J Virol 77, 6438-6449. Martinez-Torrecuadrada, J.L., Saubi, N.s., Pagès-Manté, A., Castón, J.R., Espuña, E., Casal, J.I., 2003. Structure-dependent efficacy of infectious bursal disease virus (IBDV) recombinant vaccines. Vaccine 21, 3342-3350. Maw, M.T., Yamaguchi, T., Ohya, K., Fukushi, H., 2008. Detection of vaccine-like infectious bursal disease (IBD) virus in IBD vaccine-free chickens in Japan. J Vet Med Sci. 70, 833-835. Mazariegos, L.A., Lukert, P.D., Brown, J., 1990. Pathogenicity and immunosuppressive properties of infectious bursal disease "intermediate" strains. Avian Dis 34, 203-208. Morello, E., Bermudez-Humaran, L.G., Llull, D., Sole, V., Miraglio, N., Langella, P., Poquet, I., 2008. Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion. J Mol Microbiol Biotechnol 14, 48-58. Mottagui-Tabar, S., Bjornsson, A., Isaksson, L.A., 1994. The second to last amino acid in the nascent peptide as a codon context determinant. EMBO J 13, 249-257. Muller, H., 1986. Replication of infectious bursal disease virus in lymphoid cells. Arch Virol 87, 191-203. Muller, H., Becht, H., 1982. Biosynthesis of virus-specific proteins in cells infected with infectious bursal disease virus and their significance as structural elements for infectious virus and incomplete particles. J Virol 44, 384-392. Muller, H., Nitschke, R., 1987. The two segments of the infectious bursal disease virus genome are circularized by a 90,000-Da protein. Virology 159, 174-177. Muller, H., Scholtissek, C., Becht, H., 1979. The genome of infectious bursal disease virus consists of two segments of double-stranded RNA. J Virol 31, 584-589. Novy, R., Drott, D., Yaeger, K., Mierendorf, R., 2001. Overcoming the codon bias of E. coli for enhanced protein expression, inNovations, pp. 1-3. Nunoya, T., Otaki, Y., Tajima, M., Hiraga, M., Saito, T., 1992. Occurrence of acute infectious bursal disease with high mortality in Japan and pathogenicity of field isolates in specific-pathogen-free chickens. Avian Dis 36, 597-609. Ona, A., Luque, D., Abaitua, F., Maraver, A., Caston, J.R., Rodriguez, J.F., 2004. The C-terminal domain of the pVP2 precursor is essential for the interaction between VP2 and VP3, the capsid polypeptides of infectious bursal disease virus. Virology 322, 135-142. Pan, J., Lin, L., Tao, Y.J., 2009. Self-guanylylation of birnavirus VP1 does not require an intact polymerase activity site. Virology 395, 87-96. Remond, M., Da Costa, B., Riffault, S., Parida, S., Breard, E., Lebreton, F., Zientara, S., Delmas, B., 2009. Infectious bursal disease subviral particles displaying the foot-and-mouth disease virus major antigenic site. Vaccine 27, 93-98. Rogel, A., Benvenisti, L., Sela, I., Edelbaum, O., Tanne, E., Shachar, Y., Zanberg, Y., Gontmakher, T., Khayat, E., Stram, Y., 2003. Vaccination with E. coli recombinant empty viral particles of infectious bursal disease virus (IBDV) confer protection. Virus Genes 27, 169-175. Sanchez, A.B., Rodriguez, J.F., 1999. Proteolytic processing in infectious bursal disease virus: identification of the polyprotein cleavage sites by site-directed mutagenesis. Virology 262, 190-199. Saugar, I., Irigoyen, N., Luque, D., Carrascosa, J.L., Rodriguez, J.F., Caston, J.R., 2010. Electrostatic interactions between capsid and scaffolding proteins mediate the structural polymorphism of a double-stranded RNA virus. J Biol Chem 285, 3643-3650. Saugar, I., Luque, D., Ona, A., Rodriguez, J.F., Carrascosa, J.L., Trus, B.L., Caston, J.R., 2005. Structural polymorphism of the major capsid protein of a double-stranded RNA virus: an amphipathic alpha helix as a molecular switch. Structure 13, 1007-1017. Sharma, J.M., Dohms, J.E., Metz, A.L., 1989. Comparative pathogenesis of serotype 1 and variant serotype 1 isolates of infectious bursal disease virus and their effect on humoral and cellular immune competence of specific-pathogen-free chickens. Avian Dis 33, 112-124. Snyder, D.B., 1990. Changes in the field status of infectious bursal disease virus. Avian Pathol 19, 419-423. Snyder, D.B., Lana, D.P., Savage, P.K., Yancey, F.S., Mengel, S.A., Marquardt, W.W., 1988. Differentiation of infectious bursal disease viruses directly from infected tissues with neutralizing monoclonal antibodies: evidence of a major antigenic shift in recent field isolates. Avian Dis 32, 535-539. Spies, U., Muller, H., Becht, H., 1987. Properties of RNA polymerase activity associated with infectious bursal disease virus and characterization of its reaction products. Virus Res 8, 127-140. Tacken, M.G., Peeters, B.P., Thomas, A.A., Rottier, P.J., Boot, H.J., 2002. Infectious bursal disease virus capsid protein VP3 interacts both with VP1, the RNA-dependent RNA polymerase, and with viral double-stranded RNA. J Virol 76, 11301-11311. Tacken, M.G., Van Den Beuken, P.A., Peeters, B.P., Thomas, A.A., Rottier, P.J., Boot, H.J., 2003. Homotypic interactions of the infectious bursal disease virus proteins VP3, pVP2, VP4, and VP5: mapping of the interacting domains. Virology 312, 306-319. Tanimura, N., Tsukamoto, K., Nakamura, K., Narita, M., Maeda, M., 1995. Association between pathogenicity of infectious bursal disease virus and viral antigen distribution detected by immunohistochemistry. Avian Dis 39, 9-20. Tsukamoto, K., Tanimura, N., Hihara, H., Shirai, J., Imai, K., Nakamura, K., Maeda, M., 1992. Isolation of virulent infectious bursal disease virus from field outbreaks with high mortality in Japan. J Vet Med Sci 54, 153-155. van den Berg, T.P., Eterradossi, N., Toquin, D., Meulemans, G., 2000. Infectious bursal disease (Gumboro disease). Rev Sci Tech 19, 509-543. Villanueva, R.A., Galaz, J.L., Valdes, J.A., Jashes, M.M., Sandino, A.M., 2004. Genome assembly and particle maturation of the birnavirus infectious pancreatic necrosis virus. J Virol 78, 13829-13838. Wei, Y., Li, J., Zheng, J., Xu, H., Li, L., Yu, L., 2006. Genetic reassortment of infectious bursal disease virus in nature. Biochem Biophys Res Commun 350, 277-287. Whitfill, C.E., Haddad, E.E., Ricks, C.A., Skeeles, J.K., Newberry, L.A., Beasley, J.N., Andrews, P.D., Thoma, J.A., Wakenell, P.S., 1995. Determination of optimum formulation of a novel infectious bursal disease virus (IBDV) vaccine constructed by mixing bursal disease antibody with IBDV. Avian Dis 39, 687-699. Xu, H.T., Si, W.D., Dobos, P., 2004. Mapping the site of guanylylation on VP1, the protein primer for infectious pancreatic necrosis virus RNA synthesis. Virology 322, 199-210. Yao, K., Goodwin, M.A., Vakharia, V.N., 1998. Generation of a mutant infectious bursal disease virus that does not cause bursal lesions. J Virol 72, 2647-2654. Yeh, C.M., Kao, B.Y., Peng, H.J., 2009. Production of a recombinant type 1 antifreeze protein analogue by L. lactis and its applications on frozen meat and frozen dough. J Agric Food Chem 57, 6216-6223.
摘要: 
雞傳染性華氏囊病病毒(Infectious Bursal Disease Virus; IBDV)顆粒由VP2和VP3組成,分別位於顆粒之外層及內層。在病毒顆粒形成過程中,首先IBDV之polyprotein VP243藉由其中的VP4切割產生VP2前驅物(pVP2)及VP3。一部分的pVP2經宿主細胞酵素切割後與pVP2形成病毒顆粒前驅物。其中之pVP2經VP4多次切割後,再藉由VP2 cis-cleavage活性切割產生VP2,而形成成熟之病毒顆粒。然而VP4在病毒顆粒之形成過程中的影響仍然有待進一步研究。因此本試驗目的為(1)探討VP4在pVP2及VP3存在的情形下,對類病毒顆粒(Virus like particle; VLP)的形成是否扮演重要的角色;(2)經由對VLP形成之了解,設計不同之重組質體以檢測大腸桿菌系統生產IBDV VLP及subviral particle (SVP)之情形,並測試此重組蛋白對雞隻感染強毒株IBDV (very virulent IBDV; vvIBDV)之保護力。本試驗共構築五種重組質體:(1) pTri VP2-452,表現經由宿主細胞酵素作用後之pVP2 (表現VP2前端之452個胺基酸;VP2-452)、(2) pET VP243,表現polyprotein VP243、(3) pET 512/VP3/452,共同表現全長之pVP2 (VP2-512)、VP3及VP2-452、(4) pET 487/VP3/452,共同表現經VP4完整切割之pVP2 (VP2-487)、VP3及VP2-452及(5) pET VP243/452共同表現polyprotein VP243及VP2-452。將重組質體以大腸桿菌進行蛋白質表現後,收取可溶性蛋白質,經由蔗糖密度梯度超高速離心並以酵素連結免疫吸附試驗(enzyme linked immunosorbent assay; ELISA)分析重組蛋白之組成,各質體皆有T=1 SVP之形成,但僅pET VP243及pET VP243/452具較多VLP表現量,進一步以穿透式電子顯微鏡(transmission electron microscope; TEM)可觀察到大小約70 nm之VLP,然而這些VLP並未在不包含VP4之重組質體表現之蛋白中發現。將不同之重組蛋白進行保護力之動物實驗,第一次動物實驗結果顯示在2×102 EID50 vvIBDV的攻毒劑量下,pET 512/VP3/452及pET 487/VP3/452之重組蛋白僅提供雞隻部分保護力,其餘之重組蛋白則提供80 %以上之保護力。第二次動物實驗結果顯示pET VP243/452之重組蛋白確實能提供雞隻對vvIBDV感染80 %以上的保護力;而市售佐劑ISA 71誘發的抗體力價顯著高於佛氏佐劑,但是於注射部位造成嚴重的副作用。因此本研究認為VP4在pVP2的成熟及VLP的形成扮演重要的角色。而pET VP243及pET VP243/452不僅能產生VLP,並能提供雞隻對抗vvIBDV感染之良好保護力。

The viral particle of infectious bursal disease virus (IBDV) is composed of VP2 and VP3 on the outside and inside, respectively. During the formation of viral particle, a polyprotein VP243 was first produced and self-cleaved into precursor VP2 (pVP2) and VP3 by VP4. The researchers had shown that pVP2 C-terminal was further cut by VP4 and partially by host cell enzyme, and finally by VP2-itself to form mature VP2 and finally produce viral particle. However, the role of VP4 in the final steps of viral partical formation is still not clear. The objectives of this study are (1) to investigate the requirement of VP4 in the formation of virus like particle (VLP) after that pVP2 and VP3 have been already produced; (2) to construct various recombinant plasmids to investigate the production of VLP and subviral particle (SVP) in E. coli and evaluate the protection efficacy of theses recombinant proteins against very virulent IBDV (vvIBDV) challenge. Five plasmids were constructed, including (1) pTri VP2-452 (encoding for the first 452 amino acids of VP2, VP2-452, the pVP2 after cutting by host cell enzyme); (2) pET VP243 (encoding for VP243); (3) pET 512/VP3/452 (encoding for the full length of pVP2 (VP2-512), VP3 and VP2-452); (4) pET 487/VP3/452 (encoding for the pVP2 after the last cut by VP4 (VP2-487), VP3 and VP2-452); (5) pET VP243/452 (encoding for VP243 and VP2-452). The plasmids were transformed into E. coli and the expressed virus like particles were separated by sucrose gradient centrifugation and analyzed by ELISA and electron microscopy. The pET VP243 and pET VP243/452, but not the plasmids without VP4 gene, had higher 70-nm-VLP production efficiency. After challenge with 2×102 EID50 vvIBDV, the proteins expressed by pTri VP2, pET VP243 and pET VP243/452 could provide more than 80 % protection of chickens against vvIBDV. However, proteins expressed by pET 512/VP3/452 and pET 487/VP3/452 could only provide protection less than 60%. When ISA 71was used as adjuvant, the anti-IBDV antibody titer was significantly higher than that when Freund’s adjuvant was used. The severe inflammations were observed in the injection sites of proteins with ISA 71. The results indicated that VP4 play an important role in the final steps of VP2 maturation and the formation of VLP. Moreover, pET VP243 and pET VP243/452 can not only produce VLP in E. coli but also provide efficacious protection of chicks against vvIBDV.
URI: http://hdl.handle.net/11455/66472
其他識別: U0005-2508201300533000
Appears in Collections:微生物暨公共衛生學研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.