Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/66484
標題: | 豬瘟病毒醣蛋白Erns之單株抗體的製備及其應用於間接三明治ELISA抗體檢測方法之建立 Preparation of the monoclonal antibody against classical swine fever virus glycoprotein Erns and its application to an indirect sandwich ELISA |
作者: | 黃靜如 Huang, Jing-Ju |
關鍵字: | 間接三名治ELISA;indirect sandwich ELISA;豬瘟病毒;單株抗體;classical swine fever virus;Erns;monoclonal antibody | 出版社: | 微生物暨公共衛生學研究所 | 引用: | 劉庭妤。2009。豬瘟病毒醣蛋白Erns之RNase活性功能區分析。碩士論文,國立中興大學獸醫微生物學研究所,台中。 李文榮及黃金城。2006。應用聚酯纖維載體培養融合瘤細胞株. 家畜衛試所研報 No.41:153-164。 Agapov, E.V., Murray, C.L., Frolov, I., Qu, L., Myers, T.M., Rice, C.M., 2004. Uncleaved NS2-3 is required for production of infectious bovine viral diarrhea virus. Journal of virology 78, 2414-2425. Ahrens, U., Kaden, V., Drexler, C., Visser, N., 2000. Efficacy of the classical swine fever (CSF) marker vaccine Porcilis® Pesti in pregnant sows. Veterinary microbiology 77, 83-97. Bartal, A.H., Hirshaut, Y., 1987. Methods of hybridoma formation, Vol 7. Humana Pr Inc. Becher, P., Avalos Ramirez, R., Orlich, M., Cedillo Rosales, S., König, M., Schweizer, M., Stalder, H., Schirrmeier, H., Thiel, H.J., 2003. Genetic and antigenic characterization of novel pestivirus genotypes: implications for classification. Virology 311, 96-104. Becher, P., Orlich, M., Kosmidou, A., König, M., Baroth, M., Thiel, H.J., 1999. Genetic diversity of pestiviruses: identification of novel groups and implications for classification. Virology 262, 64-71. Beer, M., Reimann, I., Hoffmann, B., Depner, K., 2007. Novel marker vaccines against classical swine fever. Vaccine 25, 5665-5670. Behrens, S.E., Tomei, L., De Francesco, R., 1996. Identification and properties of the RNA-dependent RNA polymerase of hepatitis C virus. The EMBO journal 15, 12. Blome, S., Meindl-Bohmer, A., Loeffen, W., Thuer, B., Moennig, V., 2006. Assessment of classical swine fever diagnostics and vaccine performance. Revue Scientifique et Technique-Office International des Epizooties 25, 1025-1038. Brake, A.J., Merryweather, J.P., Coit, D.G., Heberlein, U.A., Masiarz, F.R., Mullenbach, G.T., Urdea, M.S., Valenzuela, P., Barr, P.J., 1984. Alpha-factor-directed synthesis and secretion of mature foreign proteins in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences 81, 4642. Branza-Nichita, N., Lazar, C., Dwek, R.A., Zitzmann, N., 2004. Role of N-glycan trimming in the folding and secretion of the pestivirus protein Erns. Biochem Biophys Res Commun 319, 655-662. Bruschke, C., Hulst, M.M., Moormann, R., Van Rijn, P., Van Oirschot, J., 1997. Glycoprotein Erns of pestiviruses induces apoptosis in lymphocytes of several species. Journal of virology 71, 6692-6696. Christmann, A., Wentzel, A., Meyer, C., Meyers, G., Kolmar, H., 2001. Epitope mapping and affinity purification of monospecific antibodies by< i> Escherichia coli</i> cell surface display of gene-derived random peptide libraries. Journal of immunological methods 257, 163-173. Clavijo, A., Lin, M., Riva, J., Mallory, M., Lin, F., Zhou, E.M., 2001. Development of a competitive ELISA using a truncated E2 recombinant protein as antigen for detection of antibodies to classical swine fever virus. Res Vet Sci 70, 1-7. Cole, C.G., 1962. History of hog cholera research in the US Dept. of Agriculture, 1884-1960, Vol 241. Agricultural Research Service, US Dept. of Agriculture. Cos, O., Ramón, R., Montesinos, J.L., Valero, F., 2006. Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: A review. Microbial Cell Factories 5, 17. Cregg, J., Madden, K., Barringer, K., Thill, G., Stillman, C., 1989. Functional characterization of the two alcohol oxidase genes from the yeast Pichia pastoris. Molecular and cellular biology 9, 1316-1323. Cregg, J., Tschopp, J., Stillman, C., Siegel, R., Akong, M., Craig, W., Buckholz, R., Madden, K., Kellaris, P., Davis, G., 1987. High–Level Expression and Efficient Assembly of Hepatitis B Surface Antigen in the Methylotrophic Yeast, Pichia Pastoris. Nature Biotechnology 5, 479-485. Cregg, J.M., Barringer, K., Hessler, A., Madden, K., 1985. Pichia pastoris as a host system for transformations. Molecular and cellular biology 5, 3376-3385. Cregg, J.M., Cereghino, J.L., Shi, J., Higgins, D.R., 2000. Recombinant protein expression in Pichia pastoris. Mol Biotechnol 16, 23-52. Delroisse, J.M., Dannau, M., Gilsoul, J.J., El Mejdoub, T., Destain, J., Portetelle, D., Thonart, P., Haubruge, E., Vandenbol, M., 2005. Expression of a synthetic gene encoding a< i> Tribolium castaneum</i> carboxylesterase in< i> Pichia pastoris</i>. Protein Expr Purif 42, 286-294. Depner, K., Hinrichs, U., Bickhardt, K., Greiser-Wilke, I., Pohlenz, J., Moennig, V., Liess, B., 1997. Influence of breed-related factors on the course of classical swine fever virus infection. Veterinary record 140, 506-507. Depner, K., Paton, D.J., Cruciere, C., De Mia, G.M., Muller, A., Koenen, F., Stark, R., Liess, B., 1995. Evaluation of the enzyme-linked immunosorbent assay for the rapid screening and detection of classical swine fever virus antigens in the blood of pigs. Rev Sci Tech 14, 677-689. Dewulf, J., Koenen, F., Mintiens, K., Denis, P., Ribbens, S., de Kruif, A., 2004. Analytical performance of several classical swine fever laboratory diagnostic techniques on live animals for detection of infection. J Virol Methods 119, 137-143. Edwards, S., Fukusho, A., Lefevre, P.C., Lipowski, A., Pejsak, Z., Roehe, P., Westergaard, J., 2000. Classical swine fever: the global situation. Veterinary microbiology 73, 103-119. Ellis, S.B., Brust, P.F., Koutz, P.J., Waters, A., Harpold, M.M., Gingeras, T.R., 1985. Isolation of alcohol oxidase and two other methanol regulatable genes from the yeast Pichia pastoris. Molecular and cellular biology 5, 1111-1121. Fetzer, C., Tews, B.A., Meyers, G., 2005. The carboxy-terminal sequence of the pestivirus glycoprotein Erns represents an unusual type of membrane anchor. Journal of virology 79, 11901-11913. Fiebach, A.R., Guzylack-Piriou, L., Python, S., Summerfield, A., Ruggli, N., 2011. Classical swine fever virus N(pro) limits type I interferon induction in plasmacytoid dendritic cells by interacting with interferon regulatory factor 7. J Virol 85, 8002-8011. Floegel‐Niesmann, G., Bunzenthal, C., Fischer, S., Moennig, V., Kaaden, O.R., 2003. Virulence of recent and former classical swine fever virus isolates evaluated by their clinical and pathological signs. Journal of Veterinary Medicine, Series B 50, 214-220. Gaede, W., 2002. Detection of classical swine fever with the LightCycler instrument. BIOCHEMICA-MANNHEIM-, 4-5. Ganges, L., Barrera, M., Nunez, J.I., Blanco, I., Frias, M.T., Rodriguez, F., Sobrino, F., 2005. A DNA vaccine expressing the E2 protein of classical swine fever virus elicits T cell responses that can prime for rapid antibody production and confer total protection upon viral challenge. Vaccine 23, 3741-3752. Hammond, J.M., Jansen, E.S., Morrissy, C.J., Williamson, M.M., Hodgson, A.L., Johnson, M.A., 2001. Oral and sub-cutaneous vaccination of commercial pigs with a recombinant porcine adenovirus expressing the classical swine fever virus gp55 gene. Arch Virol 146, 1787-1793. Handel, K., Kehler, H., Hills, K., Pasick, J., 2004. Comparison of reverse transcriptase–polymerase chain reaction, virus isolation, and immunoperoxidase assays for detecting pigs infected with low, moderate, and high virulent strains of classical swine fever virus. Journal of veterinary diagnostic investigation 16, 132. Hanson, R., 1957. Origin of hog cholera. Journal of the American Veterinary Medical Association 131, 211. Harada, T., Tautz, N., Thiel, H.J., 2000. E2-p7 region of the bovine viral diarrhea virus polyprotein: processing and functional studies. Journal of virology 74, 9498-9506. Hausmann, Y., Roman-Sosa, G., Thiel, H.J., Rumenapf, T., 2004. Classical swine fever virus glycoprotein E rns is an endoribonuclease with an unusual base specificity. J Virol 78, 5507-5512. Higgins, D.R., Cregg, J.M., 1998. Introduction to Pichia pastoris. METHODS IN MOLECULAR BIOLOGY-CLIFTON THEN TOTOWA- 103, 1-16. Horzinek, M.C., 1981. Non-arthropod-borne togaviruses. Academic Press Inc.(London) Ltd., 24-28 Oval Road, London NW1 7DX. Hulst, M., Moormann, R., 1997a. Inhibition of pestivirus infection in cell culture by envelope proteins E (rns) and E2 of classical swine fever virus: E (rns) and E2 interact with different receptors. Journal of general virology 78, 2779. Hulst, M.M., Moormann, R.J., 1997b. Inhibition of pestivirus infection in cell culture by envelope proteins E(rns) and E2 of classical swine fever virus: E(rns) and E2 interact with different receptors. J Gen Virol 78 ( Pt 11), 2779-2787. Hulst, M.M., Moormann, R.J.M., 2001. [35] E< sup> rns</sup> protein of pestiviruses. Methods in enzymology 342, 431-440. Iqbal, M., McCauley, J.W., 2002. Identification of the glycosaminoglycan-binding site on the glycoprotein Erns of bovine viral diarrhoea virus by site-directed mutagenesis. Journal of general virology 83, 2153-2159. Janeway, C.A., Travers, P., Walport, M., Capra, J.D., 2001a. Immunobiology: the immune system in health and disease. Current Biology. Janeway, C.A., Travers, P., Walport, M., Shlomchik, M.J., 2001b. The interaction of the antibody molecule with specific antigen. Jones, D.M., Patel, A.H., Targett-Adams, P., McLauchlan, J., 2009. The hepatitis C virus NS4B protein can trans-complement viral RNA replication and modulates production of infectious virus. Journal of virology 83, 2163-2177. Köhler, G., Milstein, C., 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495-497. König, M., Lengsfeld, T., Pauly, T., Stark, R., Thiel, H.J., 1995. Classical swine fever virus: independent induction of protective immunity by two structural glycoproteins. Journal of virology 69, 6479-6486. Kjeldsen, T., 2000. Yeast secretory expression of insulin precursors. Appl Microbiol Biotechnol 54, 277-286. Kolupaeva, V.G., Pestova, T.V., Hellen, C.U., 2000. Ribosomal binding to the internal ribosomal entry site of classical swine fever virus. Rna 6, 1791-1807. Koutz, P., Davis, G.R., Stillman, C., Barringer, K., Cregg, J., Thill, G., 1989. Structural comparison of the Pichia pastoris alcohol oxidase genes. Yeast 5, 167-177. Langedijk, J., Middel, W., Meloen, R., Kramps, J., De Smit, J., 2001. Enzyme-linked immunosorbent assay using a virus type-specific peptide based on a subdomain of envelope protein Erns for serologic diagnosis of pestivirus infections in swine. J Clin Microbiol 39, 906-912. Langedijk, J., Van Veelen, P., Schaaper, W., De Ru, A., Meloen, R., Hulst, M., 2002. A structural model of pestivirus Erns based on disulfide bond connectivity and homology modeling reveals an extremely rare vicinal disulfide. Journal of virology 76, 10383-10392. Langedijk, J.P.M., 2002. Translocation activity of C-terminal domain of pestivirus Erns and ribotoxin L3 loop. Journal of Biological Chemistry 277, 5308-5314. Lazar, C., Zitzmann, N., Dwek, R.A., Branza-Nichita, N., 2003. The pestivirus Erns glycoprotein interacts with E2 in both infected cells and mature virions. Virology 314, 696-705. Liess, B., Prager, D., 1976. Detection of neutralizing antibodies (NIF test): use of new technical equipment (CCSC system) for laboratory swine fever diagnosis. Diagnosis and epizootiology of classical swine fever. CEE-Publ. EUR 5496, 200-211. Lin, G.J., Liu, T.Y., Tseng, Y.Y., Chen, Z.W., You, C.C., Hsuan, S.L., Chien, M.S., Huang, C., 2009. Yeast-expressed classical swine fever virus glycoprotein E2 induces a protective immune response. Vet Microbiol 139, 369-374. Lin, M., Lin, F., Mallory, M., Clavijo, A., 2000. Deletions of structural glycoprotein E2 of classical swine fever virus strain alfort/187 resolve a linear epitope of monoclonal antibody WH303 and the minimal N-terminal domain essential for binding immunoglobulin G antibodies of a pig hyperimmune serum. Journal of virology 74, 11619-11625. Lin, M., McRae, H., Dan, H., Tangorra, E., Laverdiere, A., Pasick, J., 2010. High-resolution epitope mapping for monoclonal antibodies to the structural protein Erns of classical swine fever virus using peptide array and random peptide phage display approaches. J Gen Virol 91, 2928-2940. Lin, M., Trottier, E., Mallory, M., 2005a. Enzyme-linked immunosorbent assay based on a chimeric antigen bearing antigenic regions of structural proteins Erns and E2 for serodiagnosis of classical swine fever virus infection. Clin Diagn Lab Immunol 12, 877-881. Lin, M., Trottier, E., Pasick, J., 2005b. Antibody responses of pigs to defined Erns fragments after infection with classical swine fever virus. Clin Diagn Lab Immunol 12, 180-186. Lin, M., Trottier, E., Pasick, J., Sabara, M., 2004. Identification of antigenic regions of the Erns protein for pig antibodies elicited during classical swine fever virus infection. J Biochem 136, 795-804. Lin, T.T.C., Lee, R.C.T., 1981. An overall report on the development of a highly safe and potent lapinized hog cholera virus strain for hog cholera control in Taiwan. National Science Council. Lindenbach, B.D., Rice, C., 2001. Flaviviridae: the viruses and their replication. Fields virology 1, 991-1041. Loan, R., 1964. STUDIES OF THE NUCLEIC ACID TYPE AND ESSENTIAL LIPID CONTENT OF HOG CHOLERA VIRUS. American journal of veterinary research 25, 1366. Meyers, G., Rümenapf, T., Thiel, H.J., 1989. Molecular cloning and nucleotide sequence of the genome of hog cholera virus. Virology 171, 555-567. Meyers, G., Saalmüller, A., Büttner, M., 1999. Mutations abrogating the RNase activity in glycoprotein Erns of the pestivirus classical swine fever virus lead to virus attenuation. Journal of virology 73, 10224-10235. Moennig, V., Floegel-Niesmann, G., Greiser-Wilke, I., 2003. Clinical signs and epidemiology of classical swine fever: a review of new knowledge. The Veterinary Journal 165, 11-20. Moormann, R.J.M., Bouma, A., Kramps, J.A., Terpstra, C., De Smit, H.J., 2000. Development of a classical swine fever subunit marker vaccine and companion diagnostic test. Veterinary microbiology 73, 209-219. Moser, C., Ruggli, N., Tratschin, J.D., Hofmann, M.A., 1996. Detection of antibodies against classical swine fever virus in swine sera by indirect ELISA using recombinant envelope glycoprotein E2. Vet Microbiol 51, 41-53. Moser, C., Stettler, P., Tratschin, J.D., Hofmann, M.A., 1999. Cytopathogenic and noncytopathogenic RNA replicons of classical swine fever virus. Journal of virology 73, 7787-7794. Narita, M., Kawashima, K., Kimura, K., Mikami, O., Shibahara, T., Yamada, S., Sakoda, Y., 2000. Comparative immunohistopathology in pigs infected with highly virulent or less virulent strains of hog cholera virus. Veterinary Pathology Online 37, 402. Rümenapf, T., Stark, R., Meyers, G., Thiel, H.J., 1991. Structural proteins of hog cholera virus expressed by vaccinia virus: further characterization and induction of protective immunity. Journal of virology 65, 589-597. Rümenapf, T., Unger, G., Strauss, J.H., Thiel, H.J., 1993. Processing of the envelope glycoproteins of pestiviruses. Journal of virology 67, 3288-3294. Reed, K.E., Gorbalenya, A.E., Rice, C.M., 1998. The NS5A/NS5 proteins of viruses from three genera of the family Flaviviridae are phosphorylated by associated serine/threonine kinases. Journal of virology 72, 6199-6206. Risatti, G., Borca, M., Kutish, G., Lu, Z., Holinka, L., French, R., Tulman, E., Rock, D., 2005a. The E2 glycoprotein of classical swine fever virus is a virulence determinant in swine. Journal of virology 79, 3787-3796. Risatti, G., Holinka, L., Lu, Z., Kutish, G., Callahan, J., Nelson, W., Tio, E.B., Borca, M., 2005b. Diagnostic evaluation of a real-time reverse transcriptase PCR assay for detection of classical swine fever virus. J Clin Microbiol 43, 468-471. Risatti, G.R., Holinka, L.G., Fernandez Sainz, I., Carrillo, C., Lu, Z., Borca, M.V., 2007. N-linked glycosylation status of classical swine fever virus strain Brescia E2 glycoprotein influences virulence in swine. J Virol 81, 924-933. Ritchie, A., Fernelius, A., 1968. Direct immuno-electron microscopy and some morphological features of hog cholera virus. Archives of Virology 23, 292-298. Romanos, M., 1995. Advances in the use of< i> Pichia pastoris</i> for high-level gene expression. Current Opinion in biotechnology 6, 527-533. Sainz, I.F., Holinka, L.G., Lu, Z., Risatti, G.R., Borca, M.V., 2008. Removal of a N-linked glycosylation site of classical swine fever virus strain Brescia Erns glycoprotein affects virulence in swine. Virology 370, 122-129. Schneider, R., Unger, G., Stark, R., Schneider-Scherzer, E., Thiel, H.J., 1993. Identification of a structural glycoprotein of an RNA virus as a ribonuclease. Science 261, 1169. Seago, J., Hilton, L., Reid, E., Doceul, V., Jeyatheesan, J., Moganeradj, K., McCauley, J., Charleston, B., Goodbourn, S., 2007. The Npro product of classical swine fever virus and bovine viral diarrhea virus uses a conserved mechanism to target interferon regulatory factor-3. Journal of general virology 88, 3002-3006. Shiu, J.S., Chang, M.H., Liu, S.T., Ho, W.C., Lai, S.S., Chang, T.J., Chang, Y.S., 1996. Molecular cloning and nucleotide sequence determination of three envelope genes of classical swine fever virus Taiwan isolate p97. Virus Res 41, 173-178. Singh, G., 2007. Determination of Cutoff Score for a Diagnostic Test. The Internet Journal of Laboratory Medicine 2. Sreekrishna, K., Brankamp, R.G., Kropp, K.E., Blankenship, D.T., Tsay, J.T., Smith, P.L., Wierschke, J.D., Subramaniam, A., Birkenberger, L.A., 1997. Strategies for optimal synthesis and secretion of heterologous proteins in the methylotrophic yeast< i> Pichia pastoris</i>. Gene 190, 55-62. Suradhat, S., Damrongwatanapokin, S., 2003. The influence of maternal immunity on the efficacy of a classical swine fever vaccine against classical swine fever virus, genogroup 2.2, infection. Vet Microbiol 92, 187-194. Susa, M., König, M., Saalmüller, A., Reddehase, M., Thiel, H., 1992. Pathogenesis of classical swine fever: B-lymphocyte deficiency caused by hog cholera virus. Journal of virology 66, 1171-1175. Tang, Q., Zhang, Y., Fan, L., Tong, G., He, L., Dai, C., 2010. Classic swine fever virus NS2 protein leads to the induction of cell cycle arrest at S-phase and endoplasmic reticulum stress. Virol J 7. Tautz, N., Elbers, K., Stoll, D., Meyers, G., Thiel, H., 1997. Serine protease of pestiviruses: determination of cleavage sites. Journal of virology 71, 5415-5422. Tellinghuisen, T.L., Paulson, M.S., Rice, C.M., 2006. The NS5A protein of bovine viral diarrhea virus contains an essential zinc-binding site similar to that of the hepatitis C virus NS5A protein. Journal of virology 80, 7450-7458. Terpstra, C., 1978. Detection of C-strain virus in pigs following vaccination against swine fever (author''s transl)]. Tijdschr Diergeneeskd 103, 678. Tews, B.A., Schürmann, E.M., Meyers, G., 2009. Mutation of cysteine 171 of pestivirus Erns RNase prevents homodimer formation and leads to attenuation of classical swine fever virus. Journal of virology 83, 4823-4834. Thiel, H., Stark, R., Weiland, E., Rümenapf, T., Meyers, G., 1991. Hog cholera virus: molecular composition of virions from a pestivirus. Journal of virology 65, 4705-4712. Tschopp, J., Sverlow, G., Kosson, R., Craig, W., Grinna, L., 1987a. High-level secretion of glycosylated invertase in the methylotrophic yeast, Pichia pastoris. Nature Biotechnology 5, 1305-1308. Tschopp, J.F., Brust, P.F., Cregg, J.M., Stillman, C.A., Gingeras, T.R., 1987b. Expression of the lacZ gene from two methanol-regulated promoters in Pichia pastoris. Nucleic acids research 15, 3859-3876. Uttenthal, Å., Le Potier, M.F., Romero, L., De Mia, G.M., Floegel-Niesmann, G., 2001. Classical swine fever (CSF) marker vaccine:: Trial I. Challenge studies in weaner pigs. Veterinary microbiology 83, 85-106. Van Gennip, H., Bouma, A., Van Rijn, P., Widjojoatmodjo, M., Moormann, R., 2002. Experimental non-transmissible marker vaccines for classical swine fever (CSF) by trans-complementation of Erns or E2 of CSFV. Vaccine 20, 1544-1556. Van Rijn, P., Miedema, G., Wensvoort, G., Van Gennip, H., Moormann, R., 1994. Antigenic structure of envelope glycoprotein E1 of hog cholera virus. Journal of virology 68, 3934-3942. van Rijn, P.A., van Gennip, R.È.G.P., de Meijer, E.J., Moormann, R.J.M., 1992. A preliminary map of epitopes on envelope glycoprotein E1 of HCV strain Brescia. Veterinary microbiology 33, 221-230. Warrener, P., Collett, M.S., 1995. Pestivirus NS3 (p80) protein possesses RNA helicase activity. Journal of virology 69, 1720-1726. Waterham, H.R., Digan, M.E., Koutz, P.J., Lair, S.V., Cregg, J.M., 1997. Isolation of the< i> Pichia pastoris</i> glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene 186, 37-44. Weiland, E., Ahl, R., Stark, R., Weiland, F., Thiel, H.J., 1992. A second envelope glycoprotein mediates neutralization of a pestivirus, hog cholera virus. Journal of virology 66, 3677-3682. Weiland, E., Stark, R., Haas, B., Rümenapf, T., Meyers, G., Thiel, H.J., 1990. Pestivirus glycoprotein which induces neutralizing antibodies forms part of a disulfide-linked heterodimer. Journal of virology 64, 3563-3569. Windisch, J.M., Schneider, R., Stark, R., Weiland, E., Meyers, G., Thiel, H.J., 1996. RNase of classical swine fever virus: biochemical characterization and inhibition by virus-neutralizing monoclonal antibodies. J Virol 70, 352-358. Wiskerchen, M., Belzer, S.K., Collett, M., 1991. Pestivirus gene expression: the first protein product of the bovine viral diarrhea virus large open reading frame, p20, possesses proteolytic activity. Journal of virology 65, 4508-4514. Wiskerchen, M., Collett, M.S., 1991. Pestivirus gene expression: protein p80 of bovine viral diarrhea virus is a proteinase involved in polyprotein processing. Virology 184, 341-350. Wood, J., 1984. Immunization and fusion protocols for hybridoma production. Methods in molecular biology (Clifton, NJ) 1, 261. Wu, C.W., Chien, M.S., Liu, T.Y., Lin, G.J., Lee, W.C., Huang, C., 2011. Characterization of the monoclonal antibody against classical swine fever virus glycoprotein E(rns) and its application to an indirect sandwich ELISA. Appl Microbiol Biotechnol 92, 815-821. Xiao, M., Lu, W., Chen, J., Wang, Y., Zhen, Y., Li, B., 2004. The Necessary Site for Initiation of RNA Synthesis in the 3′-Noncoding Region of Classical Swine Fever Virus Genome. Molecular Biology 38, 289-297. Xu, J., Mendez, E., Caron, P.R., Lin, C., Murcko, M.A., Collett, M.S., Rice, C.M., 1997. Bovine viral diarrhea virus NS3 serine proteinase: polyprotein cleavage sites, cofactor requirements, and molecular model of an enzyme essential for pestivirus replication. Journal of virology 71, 5312-5322. Xue, W., Minocha, H.C., 1993. Identification of the cell surface receptor for bovine viral diarrhoea virus by using anti-idiotypic antibodies. Journal of general virology 74, 73-79. Yu, X., Tu, C., Li, H., Hu, R., Chen, C., Li, Z., Zhang, M., Yin, Z., 2001. DNA-mediated protection against classical swine fever virus. Vaccine 19, 1520-1525. | 摘要: | 豬瘟(classical swine fever, CSF)是由豬瘟病毒(classical swine fever virus, CSFV)所引起之豬隻高度傳染性疾病。豬瘟病毒在分類上屬於黃病毒科(Flaviviridae)中之瘟疫病毒屬(Pestivirus)成員,而患病之豬隻有發燒、出血及淋巴球低下等主徵。而CSFV之醣蛋白Erns具有獨特之RNase活性亦可誘發宿主之抗體反應,故在致病機轉上扮演重要角色。本研究之目的為製備抗CSFV Erns之單株抗體(monoclonal antibody, Mab),並進一步應用做為血清學診斷工具。所得三株抗CSFV Erns單株抗體分別命名為1-41、3-8及10-12,可特異性辨識酵母菌或細菌所表現之Erns重組蛋白,其抗體亞型皆屬於IgG1,且利用E. coil表現之Erns次單位片段及peptide scanning方法分析此三株單株抗體之抗原辨識位(epitope mapping),結果顯示可分別辨識Erns蛋白胺基酸(amino acid, a.a.)序列161-190、151-170及141-150之位置。進一步選用單株抗體10-12做為捕捉以酵母菌所表現Erns重組蛋白(yErnsN190)為抗原的capture antibody,並建立間接三明治(indirect sandwich)ELISA抗體檢測方法。以經CHEKIT Classical Swine Fever Marker Test (IDEXX) blocking ELISA判定之豬隻血清,包括29支陽性及26支陰性血清進行測定比較,結果顯示本研究所建立之間接三明治ELISA具有良好之敏感性為97% (28/29)而特異性亦可達85% (22/26)。此診斷方法將來可提供作為大量樣品篩檢,亦具有無需純化抗原與操作簡便及價格低廉等優點。 Classical swine fever (CSF) caused by clsaaical swine fever virus (CSFV) is a high mortality disease in pigs. CSFV belongs to the genus Pestivirus of the Flaviviridae family, and infected pigs are often characterized by fever, hemorrhages and leucopenia on pathogenic findings. Glycoprotein Erns of CSFV contains an unique RNase functional domain and could induce humoral immune response, that plays an important role in the pathogenesis. The purpose of this study is to prepare the anti-CSFV Erns monoclonal antibody (Mab) for further applying as a diagnostic tool. Three Mabs 1-41, 3-8 and 10-12 specific to recognize yeast or E. coli expressed Erns were obtained and all were determined to be the type of IgG1 subclass. The antigenic sites recognized by Mabs 1-41, 3-8 and 10-12 were mapped using E. coli subunit and peptide scanning. The result shows to recognize the Erns region of amino acid residues 161-190, 151-170 and 141-150, respectively. Furthermore, the Mab 10-12 was used as a capture antibody to develop a yeast-expressed Erns subunit (yErns/N190) based indirect sandwich ELISA for detecting swine antibody to Erns. The assay demonstrated a high sensitivity of 97% (28/29) and a moderate specificity of 85% (22/26) when compared with a commercial CHEKIT Classical Swine Fever Marker Test (IDEXX) Erns blocking ELISA. This diagnosis tool could detect large numbers serum with easy manipulation and low cost. |
URI: | http://hdl.handle.net/11455/66484 | 其他識別: | U0005-1007201215251200 |
Appears in Collections: | 微生物暨公共衛生學研究所 |
Show full item record
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.