Please use this identifier to cite or link to this item:
標題: 利用積體化變壓器原理之可調電感技術實現高效能振盪器應用於頻率合成器之設計與分析
Design and Analysis of Frequency Synthesizers with High-performance Oscillators using an Integrated Transformer-Based Tunable Inductor Technique
作者: 蔡孟庭
Tsai, Meng-Ting
關鍵字: Frequency Synthesizer;振盪器;Oscillator;Tunable Inductor;頻率合成器;可調電感
出版社: 電機工程學系所
引用: [1] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2000. [2] B. Razavi, RF Microelectronics, Prentice Hall, 1998. [3] Neil H.E. Weste, K. Eshraghian, Principles of CMOS VLSI Design: A Systems Perspective, 2nd edition, Prentice Hall, 2000. [4] C. Patrick Yue, S. Simon Wong, “On-Chip Spiral Inductors with Patterned Ground Shields for Si-Based RF IC's”, IEEE J. Of Solid-State Circuits, Vol. 33, No.5, pp. 743-752, MAY 1998. [5] B. Razavi, Design of Integrated Circuits for Optical Communications, McGraw-Hill, 2003. [6] Floyd M. Gardner, Phaselock Techniques, 3rd edition, New York: Wiley& Sons, 2005. [7] F. Gardner, “Charge-Pump Phase-Lock Loops”, IEEE Trans. Communications, Vol. 28, pp. 1849-1858, Nov. 1980. [8] M. Van Paemel, “Analysis of a charge-pump PLL: a new model”, IEEE Trans Communications, Vol.42, pp.2490-2498, July 1994. [9] M. Soyuer and R. G. Meyer, “Frequency limitations of a conventional phase-frequency detector”, IEEE J. Of Solid-State Circuits, Vol. 25, No.8, pp. 1019-1022, Aug. 1990. [10] H. O. Johansson, “A simple precharged CMOS phase frequency detector”, IEEE J. Of Solid-State Circuits, Vol. 33, No. 2, pp. 295-299, Feb. 1998. [11] M. Mansuri, D. Liu and C. K. Ken Yang, “Fast frequency acquisition phase-frequency detectors for GSamples/s phase-locked loops”, IEEE J. Of Solid-State Circuits, Vol. 37, No.10, pp. 1331-1334, Oct. 2002. [12] S. O. Jeon, T. S. Cheung and W. Y. Choi, “Phase/frequency detectors for high-speed PLL applications”, Electronic Letters, Vol. 34, pp. 2120-2121, Oct. 1998. [13] B. Razavi, “A Study of Phase Noise in CMOS Oscillators”, IEEE J. Of Solid-State Circuits, Vol. 31, No.3, pp. 331-343, MARCH 1996. [14] N.H.W. Fong, J.-O. Plouchart, N. Zamdmer, Duixian Liu, L.F. Wagner, C. Plett and N.G. Tarr, “Design of wide-band CMOS VCO for multiband wireless LAN applications”, IEEE J. Of Solid-State Circuits, Vol. 38, No.8, pp. 1333-1341, Aug. 2003 [15] Zhenbiao Li and Kennethh K. O., “A Low-Phase-Noise and Low-Power Multiband CMOS Voltage-Controlled Oscillator”, IEEE J. Of Solid-State Circuits, Vol. 40, No. 6, JUNE 2005. [16] S. Keliu and S.-S. Edgar, CMOS PLL Synthesizers: Analysis and Design, Springer, 2005. [17] B. D. Muer and M. Steyaert, CMOS Fractional-N Synthesizers: Design for High Spectral Purity and Monolithic Integration, Kluwer Academic Publishers, 2003. [18] R. Ahola, “Integrated Radio Freqency Synthesizers for Wireless Applications”, Ph. D. thesis, Helsinki University, 2005. [19] U. L. Rhode, Digital PLL Frequency Synthesizers, Theory and Design, Prentice-Hall, 1983. [20] J.-W. Chen, “A Fractional-N Frequency Synthesizer with a Phase-Compensation Technique for IEEE 802.11 a/b/g channels”, M. S. thesis, National Chung Hsing University, 2005. [21] M. Kozak and I. Kale, “A Pipelined Noise Shaping Coder for Fractional-N Frequency Synthesis”, IEEE Transactions On Instrumentation and Measurement, Vol. 50, No. 5, pp. 1154-1161, Oct., 2001. [22] A. M. Fahim and M. I. Elmasry, “A Wideband Sigma-Delta Phase-Locked-Loop Modulator for Wireless Application”, IEEE Transactions on Circuits and Systems, Vol. 50, No. 5, pp. 53-62, Feb., 2003. [23] Y.-T. Chang, “A GFSK Modulator by Using a Fractional-N Frequency Synthesizer”, M. S. thesis, National Taiwan University, 2003. [24] L.-Y. Chang, “A Spread Spectrum Clock Generator Based on a Sigma-Delta Modulated Phase-Locked Loop”, M. S. thesis, National Taiwan University, 2003. [25] E. Hegazi, J. Rael and A. Abidi, The Designer's Guide to High-Purity Oscillators, Kluwer Academic Publishers, 2005. [26] D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” in Proc. IEEE, vol. 54, pp. 329-330 , Feb. 1966. [27] T. H. Lee, A. Hajimiri, “Oscillator Phase Noise: A Tutorial,” IEEE J. Of Solid- State Circuits, vol. 35, pp. 326-336., March 2000. [28] J.J. Rael, A.A. Abidi, “Physical Processes of Phase Noise in Differential LC Oscillators,” IEEE Custom Integrated Circuits Conference, 2000. [29] B.-Y. Sze and C.-L. Ho, VIA Technologies, Inc., Taipei, Taiwan, “A Low Phase Noise Quadrature LC VCO in CMOS Technology”, IEEE Radio Frequency Integrated Circuits Symposium, 2005. [30] E. Hegazi, H. Sjoland, A.A. Abidi, “A Filtering Technique to Lower LC Oscillator Phase Noise,” IEEE J. Of Solid-State Circuits, vol. 36, pp. 1921-1930, Dec. 2001. [31] M. Danesh, J.R. Long, R.L. Hadaway, D.L. Harame, “A Q-factor Enhancement Technique for MMIC Inductors,” IEEE Radio Frequency Integrated Circuits Symposium, pp. 217-220, June 1998. [32] M. Straayer, J. Cabanillas, G.M. Rebeiz, “A Low-Noise 1.7GHz CMOS VCO,” IEEE ISSCC Digest of Technical Papers, vol 1, pp. 286-287, 2002. [33] A. Hajimiri and T. H. Lee, “A General theory of the phase noise in electrical oscillators”, IEEE J. Of Solid-State Circuits, vol. 33, pp. 179-194, Feb. 1998. [34] Y. P. Tsivids, Operation and Modeling of the MOS Transistor, McGraw-Hill, 1987. [35] C. Patrick and S. S. Wong, “On-Chip Spiral Inductors with Patterned Ground Shields for Si-Based RF IC's,” IEEE J. Of Solid-State Circuits, vol. 33, pp. 743-752, MAY 199 [36] H. -M. Hsu, “Improving the quality factor of broaden spiral inductor with arithmetic progression step width”, Microwave and Optical Technology Letters, Vol.45, pp.118-120, April, 2005. [37] T. Yeung, “Analysis and Design of On-chip Spiral Inductors and Transformers for Silicon RF Integrated Circuits,” M. S. thesis, HKUST, 1998. [38] P. Andreani, “A1.8-GHz Monolithic CMOS VCO Tuned by an Inductive Varactor,” IEEE International Symposium on Circuits and Systems, Vol. 4, Page(s):714 - 717, May 2001. [39] S.-L. Jang, R.-H. Yen, Y.-H. Chuang, J.-F. Lee, and S.-H. Lee," A low voltage 0.55V CMOS voltage controlled oscillator with transformer feedback," International Symposium on Communications, 2005. [40] J. C. Costa, “Analysis Of Integrated Transformers and its Application to RFIC Design”, Ph. D. thesis, Universitat de Barcelona, 2002. [41] T. Y. Kim, A. Adams, and N. Weste, “High Performance SOI and bulk CMOS 5GHz VCO's”, in IEEE Radio Frequency Integrated Circuits Symp. Dig. Papers, Philadelphia, PA, Jun. 2003, pp. 93-96. [42] K. Kwok and H. C. Luong, “Ultra-Low-Voltage High-Performance CMOS VCOs Using Transformer Feedback”, IEEE J. Of Solid-State Circuits, Vol. 40, No.3, MARCH 2005. [43] A. Ravi, K. Soumyanath, R. E. Bishop, B. A. Bloechel, and L. R. Carley,“ An optimally transformer coupled, 5GHz quadrature VCO in a 0.18-μm digital CMOS process,” in Symp. VLSI Circuits Dig. Tech. Papers, Jun.2003, pp. 141-144. [44] D. Baek, T. Song, E. Yoon, and S. Hong, “8-GHz CMOS quadrature VCO using transformer-based LC tank,” IEEE Microw. Wireless Compon. Lett., vol. 13, no. 10, pp. 446-448, Oct. 2003. [45] S. Ko, J.-G. Kim, T. Song, E. Yoon, and S. Hong, “20 GHz integrated CMOS frequency sources with a quadrature VCO using transformers,” Proc. IEEE Radio Frequency Integrated Circuits Symp., pp. 269-272, Jun. 2004. [46] T. Song, S. Ko, D.-H. Cho, H. -S. Oh, C. Chung, and E. Yoon, “A 5 GHz transformer-coupled CMOS VCO using bias-level shifting technique, ”in Proc. IEEE Radio Frequency Integrated Circuits Symp . , Jun. 2004, pp. 127-130. [47] N. -J. Oh and S. -G. Lee, “11-GHz CMOS Differential VCO with back-gate transformer feedback,” IEEE Microw. Wireless Compon. Lett. , vol. 15, no. 11, pp. 733-735, NOV. 2005. [48] IEEE Std 802.11a/b/g, “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer Specifications” Higher-Speed Physical Layer in 2.4-GHz and 5-GHz band,” 2003. [49] C.-Y. Yang, J.-W. Chen and M.-T. Tsai, “A high-frequency phase-compensation fractional-N frequency synthesizer,” IEEE International Symposium on Circuits and Systems, Vol. 5, Page(s): 5091 - 5094, May 2005. [50] Y. Lee, “A Clock/Data Recovery Circuit and an Efficient I/O for Chip-to-Chip Communication,” M.S. thesis, National Chung Hsing University, 2005. [51] B. Razavi, T. Aytur, C. Lam, F.- R. Yang; R.- H. Yan; H.- C. Kang; C.- C. Hsu; C.- C. Lee; ”Multiband UWB transceivers”, Custom Integrated Circuits Conference, pp. 141 - 148, Sept. 2005. [52] J. Lee and D.- W. Chiu, “ A 7-band 3-8 GHz frequency synthesizer with 1 ns band-switching time in 0.18-μm CMOS technology,” Solid-State Circuits Conference, 2005. Digest of Technical Papers. IEEE International pp. 204 - 593 Vol. 1, Feb. 2005. [53] G.- Y. Tak; S.- B. Hyun; T. Y. Kang; B. G. Choi; S. S. Park; “ A 6.3-9-GHz CMOS fast settling PLL for MB-OFDM UWB applications”, IEEE J. Of Solid-State Circuits, Vol. 40, pp. 1671-1679, Aug. 2005. [54] A.R. Shahani, D.K. Shaeffer, S.S. Mohan, H. Samavati, H.R. Rategh, M. del Mar Hershenson,; M. Xu; C.P. Yue, D.J. Eddleman, M.A. Horowitz, T.H. Lee, “Low-power dividerless frequency synthesis using aperture phase detection”, IEEE J. Of Solid-State Circuits, Vol. 33, pp. 2232 - 2239, Dec. 1998. [55] Ching-Yuan Yang; Shen-Iuan Liu, “Fast-switching frequency synthesizer with a discriminator-aided phase detector,” IEEE J. Of Solid-State Circuits, Vol. 35, pp. 1128-1136, Aug. 2000.
第二部分將探討有關於傳統電感-電容式壓控振盪器的架構,及使用電容式變容器的缺點分析,提出可變電感架構,並使用積體化變壓器的概念實現。針對利用積體化變壓器構成的可變電感架構進行分析,對其特性加以探討,並將此理論應用於壓控振盪器中,分別提出實現於兩種架構:增益控制振盪器與轉導控制振盪器,皆以0.18μm CMOS 製程製造。增益控制振盪器分為兩組,分別操作於3GHz 與7GHz 的頻帶,在1MHz 頻率偏移處相位雜訊為-125dBc/Hz 與-113dBc/Hz,最低功率消耗可為4.8mW 與9mW,FoM 達到-188 dBc/Hz 與-180 dBc/Hz。轉導控制振盪器可操作於5GHz 頻帶,在1MHz 頻率偏移處相位雜訊為-121dBc/Hz,功率消耗約為9mW,FoM 為-187 dBc/Hz。
最後一部份將探討頻率合成器的設計,可分為兩個主題,第一部分為使用可變電感所實現的增益控制振盪器應用於頻率合成器中,此頻率合成器的除頻器為雙模組除頻器,並加上三角積分調變器進行調變,使其能夠達到除小數的功能,其輸出頻率範圍3.74GHz~4.68GHz,工作電壓為1.8V時的功率消耗為67mW。另一部分則是將另外一種振盪器架構-轉導控制振盪器應用於頻率合成器中,此頻率合成器主要被設計能符合超寬頻通訊系統模式一的規格,且以快速鎖定與快速跳頻為主要設計訴求,並使用無除頻器的鎖相迴路達到此目的,其中使用到兩個鎖相迴路共用一除頻器以節省功率消耗,並進行模擬驗證此架構的可行性,本晶片以0.18μm CMOS製程製造,面積為1.4mm × 1.4mm,工作電壓為1.8V 時的功率消耗為89mW。

This thesis describes the feasibility study of inductive varactor realized with integrated transformer and frequency synthesis based on phase-locked loop technique. There are three major parts in this thesis discussed in detail.
The first part of the thesis would introduce the concept of phase-locked loop, and describe about how it operations. The differences between integer-N and fractional-N frequency synthesizer, in addition to the fractional-N one realized with delta-sigma modulator would be discussed. And then, the phase noise concept and its model together with the design of LC voltage controlled
oscillator would be mentioned.
The second part of this thesis discussed the traditional LC VCO applied capacitive varactors and its disadvantages. The thesis proposed the concept of inductive varactor. The proposed structures employ integrated transformers as
inductance with voltage-controlled value. The traditional approach of tuning the VCO oscillation frequency by capacitance variation would be sacrificed, and the proposed structure with induction variation will be applied to substitute for that. Two kinds of the VCOs are proposed. One is gain-controlled oscillator, and the other is transconductance-controlled oscillator. The measurement result of the first kind of the VCOs have phase noise at 1MHz offset from a 3GHz and 7GHz carrier of -125dBc/Hz and -113dBc/Hz, and the power consumption is about 4.85mW and 9mW. FoM is about -188 dBc/Hz and -180 dBc/Hz. The
second kind of the VCO has phase noise at 1MHz offset from a 5GHz band carrier of -121dBc/Hz, and the power consumption is about 9mW. FoM is about -187 dBc/Hz.
The last part of all, the work presents the frequency synthesizer based on PLLs. It divided into two parts of the work. The first one applied the gain-controlled oscillator, dual-modulus frequency divider and delta-sigma
modulator to realize a fractional-N frequency synthesizer. The output frequency ranges from 3.74GHz to 4.68GHz. It consumes 67mW from a 1.8V power supply. The other frequency synthesizer is based on transconductance
-controlled oscillator, which is designed to meet the OFDM UWB Mode-1 application specification. The frequency synthesizer is designed for fast locking and fast hopping application with dividerless architecture. In addition, this thesis discusses the problems of the SSB-mixer applied in the papers in the recent years. The two PLLs share one frequency divider to reduce power consumption. The chip is implemented in 0.18μm CMOS technology with the
die area 1.4mm × 1.4mm and consumes 89mW from a 1.8V power supply.
其他識別: U0005-2308200612553900
Appears in Collections:電機工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.