Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/6750
標題: 以溶膠凝膠法製備ZnO:Al透明導電膜
Preparation of transparent conductive ZnO: Al film by sol-gel method
作者: 黃啟量
Huang, Chi-Liang
關鍵字: sol-gel;溶膠凝膠;AZO;annealing;H plasma;氧化鋅摻鋁;退火;氫電漿
出版社: 電機工程學系所
引用: [1] 戴寶通,鄭晃忠,太陽能電池技術手冊,台灣電子材料與元件協會發行出版,2008. [2] J. J. Wang, J. X. Liu,” The Investigation and Development of Solar Cells and Materials”,Journal of Zhejiang Wanli University, vol. 19, 2006. [3] L. L. Kazmerski, ” Solar Photovoltaics R&D at the Tipping Point: A 2005 Technology Overview”, Journal. of Electron Spectroscopy and Related Phenomena, vol. 150, p. 105, 2006. [4] G. Gordillo, C. Calderon, ”Properties of ZnO thin films prepared by reactive evaporation”, Solar Energy Materials Solar Cells, vol. 69, p. 251,2001. [5] P. Nunes, D. Costa, E. Fortunato, R. Martins, “Performances presented by zinc oxide thin films deposited by R.F. magnetron sputtering”, Vacuum, vol. 64, p. 293, 2002. [6] S. M. Hyun, K. Hong, B. H. Kim, ”Preparation and characterization of Al doped ZnO transparent conducting thin film by sol–gel processing”, Journal of Korean Ceramic Society, vol. 33, p.149, 1996. [7] C. Klingshirn, “The Luminescence of ZnO under High One- and Two-Quantum Excitation”, Physica Status Solidi B, vol.71, p. 547, 1975. [8] 姜辛,孫超,洪瑞江,戴達煌,透明導電氧化物薄膜,高等教育出版社,2008. [9] D. W. Lane, T. A. Coath, H. S. Beldon, “Optical properties and structure of thermally evaporated tin oxide films”, Thin Solid Films, vol. 221, p. 262, 1992 . [10] L. J. Meng, M. P. dos Santos, ”Structure effect on electrical properties of ITO films prepared by RF reactive magnetron sputtering”, Thin Solid Films, vol. 289, p. 65, 1996. [11] B. M. Ataev, A. M. Bagamadova, V. V. Mamedov, A. K. Omaev, M. R. Rabadanov, “Highly conductive and transparent thin ZnO films prepared in situ in a low pressure system”, Journal of Crystal Growth, vol. 198-199, p. 1222, 1999. [12] E.S. Shim, H.S. Kang, J.S. Kang, J.H. Kim, S.Y. Lee,” Effect of the variation of film thickness on the structural and optical properties of ZnO thin films deposited on sapphire substrate using PLD”, Applied Surface Science, vol. 186, p. 474, 2002. [13] F. Paraguay D., W. Estrada L., D. R. Acosta N., E. Andrade, M. Miki-Yoshida, “Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis”, Thin Solid Films, vol. 350, p. 192, 1999. [14] M.N. Kamalasanan, S. Chandra, ” Sol-gel synthesis of ZnO thin films”, Thin Solid Films, vol. 288, p.112, 1996. [15] P. Nunes, D. Costa, E. Fortunato, R. Martins, “Performances presented by zinc oxide thin films deposited by R.F. magnetron sputtering”, Vacuum, vol. 64, p.293, 2002. [16] A. B. F. Martinson, J. W. Elam, J. T. Hupp, M. J. Pellin, “ZnO nanotube based dye-sensitized solar cells”, Nano Letters, vol. 7, p. 2183, 2007. [17] S. A. M. Lima, M. Cremona, M. R. Davolos, C. Legnani, W. G. Quirino, “Electroluminescence of zinc oxide thin-films prepared via polymeric precursor and via sol-gel methods”, Thin Solid Films, vol.516, p.165, 2007. [18] P. Che, J. Meng, L. Guo, “Oriented growth and luminescence of ZnO:Eu films prepared by sol-gel process”, Journal of Luminescence, vol. 122-123, p. 168, 2007. [19] D. M. King, X. H. Liang, C. S. Carney, F. Hakiml, P. Li, A. W. Weimer ,”Atomic layer deposition of UV-absorbing ZnO fims on SiO2 and TiO2 nanoparticles using a fluidized bed reactor”, Advanced Functional Materials, vol.18, p. 607, 2008. [20] B. S. Ong, C. S. Li, Y. N. Li, Y. L. Wu, R. Loutfy, “Stable, solution-processed, high-mobility ZnO thin-film transistors”, Journal of American Chemical Society, vol. 129, p. 2750, 2007. [21] H. Gong, Q. J. Hu, J. H. Wang, C. H. Ong, F. R. Zhu, “Nano-crystalline Cu-doped ZnO thin film gas sensor for CO”, Sensors and Actuators B:Chemical, vol. 115, p. 247, 2006. [22] V. R. Shinde, T. P. Gujar, C. D. Lokhande, R. S. Mane, S. H. Han, “Development of morphological dependent chemically deposited nanocrystalline ZnO films for liquefied petroleum gas (LPG) sensor”, Sensors and Actuators B: Chemical, vol. 123, p. 882, 2007. [23] E. G. Fu, F. Ling, D. M. Zhuang, G. Zhang, “Textured transparent conductive ZAO thin films deposited by magnetron sputtering”, Acta Energiae Solaris Sinica, vol. 24, p. 672, 2003. [24] L. Znaidi, G. J. A. A. Soler Illia, S. Benyahia, C. Sanchez, A.V. Kanaev, “Oriented ZnO thin films synthesis by sol–gel process for laser application”, Thin Solid Films, vol. 428, p.257, 2003. [25] H. Q. Ni, Y. F. Lu, Z. m. Ren, “Ab initio pseudopotential calculations of electronic structure of off-stoichiometric ZnO”, Japanese Journal of Applied Physics, vol. 40, p.4103, 2001. [26] Y. Ohya, H. Saiki, T. Tanaka, Y. Takahashi, ”Microstructure of TiO_2 and ZnO films fabricated by the sol-gel method”, Journal of the American Ceramic Society, vol. 79, p. 825, 1996. [27] J. H. Lee, B. O. Park, “Transparent conducting ZnO:Al, In and Sn thin films deposited by the sol-gel method”, Thin Solid Films, vol. 426, p. 94, 2003. [28] I. Hamberg,V. G. Granqvist, K. F. Berggren, B. E. Sernelius, L. Engstrom, ” Band-gap widening in heavily Sn-doped In_2 O_3”, Physics Review B, vol. 30, p. 3240, 1984. [29] T. S. Moss, “The Interpretation of the Properties of Indium Antimonide”, Proceedings of the Physical Society. Section B, vol. 67, p. 775, 1954. [30] I. Hamberg, C. G. Granqvist, “Evaporated Sn-doped In_2 O_3 films: Basic optical properties and applications to energy efficient window”, Journal Applied Physics, vol. 60, p. R123, 1968. [31] H. Dislich, P. J.Hinz, “History and principles of the sol-gel process, and some new multicomponent oxide coatings”, Journal of Non-Crystalline Solids, vol. 48, p. 11, 1982. [32] J. Li, J. H. Huang, Y. L. Zhang, Y. Yang, W. J. Song, X. M. Li, ”Effects of rapid thermal annealing in different ambients on structural,electrical,and optical properties of ZnO thin film by sol-gel method”, Journal of Electroceramics, vol. 26, p. 84, 2011. [33] P. T. Hsieh, Y. C. Chen, M. S. Lee, K. S. Kao, M. P. Houng, ”The effects of oxygen concentration on ultraviolet luminescence”, Journal of Sol-Gel Science and Technology, vol. 47, p. 1, 2008. [34] A. E. J. Gonzalez, J. A. S. Urueta, R. S. Parra, “Optical and electrical characteristics of aluminum-doped ZnO thin films prepared by sol-gel technique”, Journal of Crystal Growth, vol. 192, p. 430, 1998. [35] D. Bao, H. Gu, A. Kuang, “Sol-gel derived c-axis oriented ZnO thin films”, Thin Solid Films, vol. 312, p. 37, 1998. [36] L. Y. Lin, D. E. Kim, “Effect of annealing temperature on the tribological behavior of ZnO film prepared by sol-gel method”, Thin Solid Films, vol. 517, p. 1690, 2009. [37] R. Ghosh, B. Mallik, S. Fujihara, D.Basak, “photoluminescene and phtoconductance in annealed ZnO thin films”, Chemical Physics Letters, vol. 403, p. 415, 2005. [38] R. Ghosh, D. Basak, S. Fujihara, “Effect of substrate-induced strain on the structural, electrical and optical properties of polycrystalline ZnO thin films”, Journal of Applied Physics, vol. 96, p. 2689, 2004. [39] R. Ghosh, S. Fujihara, D. Basak, “Studies of the optoelectronic properties of ZnO thin films”, Journal of Electronic Materials, vol. 35, p. 1728, 2006. [40] Y. S. Kim, W. P. Tai, ”Electrical and optical properties of Al-doped ZnO thin films by sol-gel process”, Applied Surface Science, vol. 253, p. 4911, 2007.. [41] J. H. Lee, K. H. Ko, B. O. Park, ”Electrical and optical properties of ZnO transparent conducting films by the sol-gel method”, Journal of Crystal Growth, vol. 247, p. 119, 2003. [42] M. S. Wang, E. J. Kim, J. S. Chung, E. W. Shin, S. H. Hahn, K. E. Lee, C. Park, ”Influence of annealing temperature on the structural and optical properties of sol –gel prepared ZnO thin films”, Physica Status Solidi (a), vol. 203, p. 2418, 2006. [43] S. H Yang, Y. Liu, Y. Zhang, D. Mo, ”Investigation of annealing-treatment on structural and optical properties of sol-gel-derived zinc oxide thin films”, Bulletin of Materials Science, Vol.33, p. 209, 2010. [44] S. Y. Kuo, W. C. Chen, C. P. Cheng, ”Investigation of annealing –treatment on the optical and electrical properties of sol-gel-derived zinc oxide thin films”, Superlattices and Microstructures, vol. 39, p.162, 2006. [45] T. Ivanova, A. Harizanova, T. Koutzarova, B. Vertuyen, ”Studey of ZnO sol-gel films:Effect of annealing”, Materials Letters, vol. 64, p. 1147, 2010. [46] P. T. Hsieh, Y. C. Chen, K. S. Kao, M. S. Lee, C. C. Cheng, ”The ultraviolet emission mechanism of ZnO thin film fabricated by sol-gel technology”, Journal of the European Ceramic Society, vol. 27, p.3815, 2007. [47] M. W. Zhu, J. Gong, C. Sun, J. H. Xia, X. Jiang, ”Investigation of correlation between the microstructure and electrical properties of sol-gel derived ZnO based thin films”, Journal of Applied Physics, vol. 104, p.073113, 2008. [48] H. P. Chang, F. H. Wang, Y. S. Chen, J. Y. Wu, H. W. Liu, ”EFFECTS OF RF SPUTTERED AL-DOPED ZNO FILMS BY HYDROGEN PROCESS GAS DILUTION”. [49] H. P. Chang, F. H Wang, J. Y. Wu, C. Y. Kung, H. W. Liu, ”Enhanced conductivity of aluminum doped ZnO films by hydrogen plasma treatment”, Thin Solid Films, vol. 518, p. 7445, 2010.. [50] F. H. Wang, H. P. Chang, C. C. Tseng, C. C. Huang, H. W. Liu, ”Influence of hydrogen plasma treatment on Al-doped ZnO thin films for amorphous silicon thin film solar cells”, Current Applied Physics, vol. 11, p. S12, 2010. [51] H. Yoo, Y. H. Lim, B. H. Choi, J. H. Lee, D. C. Shin, ”Stability against hydrogen plasma exposure of Al-doped zinc oxide thin film for a-Si thin film solar cell”, Physica Status Solidi (c), vol. 8, p. 895, 2011. [52] T. Y Shie, C. F. Lin, ”Improving electrical properties of ZnO thin films by the combination of plasma treatment,post-annealing and doping” , IEEE conference, p. 756, 2008. [53] U. O ̈zgu ̈r, Y. I. Alivov, A. Teke, M. A. Reshchikov, S. Dog ̌an, V. Avrutin, S. J. Cho, H. Morkoc , “A comprehensive review of ZnO materials and devices”, Journal of Applied Physics, vol. 98, p.041301, 2005. [54] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, T. Steiner, “Recent progress in processing and properties of ZnO”, Progress in Materials Science, vol. 50, p. 293, 2005. [55] C. G. Van de Walle, “Hydrogen as a Cause of Doping in Zinc Oxide”, Physical Review Letters, vol. 85, p. 1012, 2000. [56] J. Cizek, N . Zaludova, M. Vlach, S. Danis, J. Kuriplach, I. Prochazka, G. Brauer, W. Anwand, D. Grambole, W. Skorupa, R. Gemma, R. Kirchheim, A. Pundt, ” Defect studies of ZnO single crystals electrochemically doped with hydrogen”, Journal Applied Physics, vol. 103, p. 053508, 2008. [57] M. G. Wardle, J. P. Goss, P. R. Briddon, “First Principles Study of the Diffusion of Hydrogen in ZnO’, Physical Review Letters, vol. 96, p. 205504, 2006. [58] A. Janotti, C. G. Van de Walle, ” Hydrogen multicentre bonds ”, Nature Materials, vol. 6, p. 44, 2007.. [59] E. V. Lavrov, F. Herklotz, J. Weber, “Identification of two hydrogen donors in ZnO”, Physical Review B, vol. 79, p. 165210, 2009. [60] E. V. Lavrov, F. Herklotz, J. Weber, “Identification of Hydrogen Molecules in ZnO”, Physical Review Letters, vol. 102, p. 185502, 2009. [61] M. G. Wardle, J. P. Goss, P. R. Briddon, “Theory of Fe, Co, Ni, Cu, and their complexes with hydrogen in ZnO”, Physical Review B, vol. 72, p. 155108, 2005. [62] F. A. Selim, M. H. Weber, D. Solodovnikov, K.G.Lynn, “Nature of Native Defects in ZnO”, Physical Review Letters, vol. 99, p. 085502, 2007. [63] M. S. Oh, D. K. Hwang, J. H. Lim, Y. S. Choi, S. J. Park, “Current-driven hydrogen incorporation in zinc oxide”, Applied Physics Letters, vol. 91, p. 212102, 2007. [64] Y. J. Li, T. C. Kaspar, T. C. Droubay, Z. Zhu, V. Shutthanandan, P. Nachimuthu, S. A. Chambers, “Electronic properties of H and D doped ZnO epitaxial films”, Applied Physics Letters, vol.92, p. 152105, 2008. [65] B.D. Cullity, Elements of X-Ray Diffraction, Addison-Wesley Publishing Company, Inc., London, 1978. [66] K. H. Kim, R. A. Wibowo, B. Munir, “Properties of Al-doped ZnO thin film sputtered from powder compacted target”, Materials Letters, vol. 60 p. 1931, 2006. [67] B. Y. Oh, M. C. Jeong, D. S. Kim, W. Lee, J. M. Myoung, ”Post-annealing of Al-doped ZnO film in hydrogen atmosphere”, Journal of Crystal Growth, vol. 281, p.475, 2005. [68] B. X. Lin, Z. X. Fu, Y. B. Jia, “Green luminescent center in undoped zinc oxide films deposited on silicon substrates”, Applied Physics Letters, vol. 79, p. 943, 2001. [69] Z. B. Fang, Z. J. Yan, Y. S. Tan, X. Q. Liu, Y. Y. Wang, “Influence of post-annealing treatment on the structure properties of ZnO films”, Applied Surface Science, vol. 241, p. 303, 2005. [70] J. Lim, C. Lee, “Effects of substrate temperature on the microstructure and photoluminescence properties of ZnO thin films prepared by atomic layer deposition”, Thin Solid Films, vol. 515, p. 3335, 2007. [71] F. K. Shan, Y. S. Yu, ”Band gap energy of pure and Al-doped ZnO thin films”, Journal of the European Ceramic Society, vol. 24, p. 1869, 2004. [72] V. Musat, B. Teixeira, E. Fortunato, R. C. C. Monteiro, P. Vilarinho, “Al-doped ZnO thin films by sol-gel method”, Surface and Coatings Technology, vol.180-181, p. 659 , 2004. [73] M. Ohyama, H. Kozuka, T. Yoko, “Sol-gel preparation of transparent and conductive aluminum-doped zinc oxide films with highly preferential crystal orientation”, Journal of the American Ceramic Society , vol. 81, p. 1622, 1998. [74] J. G. Lu, Z. Z. Ye, J. Y. Huang, B. H. Zhao, L. Wang, “Influence of postdeposition annealing on the crystallinity of Zinc Oxide films”, Chinese Jounal of Semiconductors, vol. 24, p. 729, 2003. [75] R. Cebulla, R. Wendt, K. Ellmer, ” Al-doped zinc oxide films deposited by simultaneous rf and dc excitation of a magnetron plasma: Relationships between plasma parameters and structural and electrical film properties”, Journal of Applied Physics, vol. 83, p. 1087, 1998. [76] B. Y. Oh, M. C. Jeong, J. M. Myoung, ”Stabilization in electrical characteristics of hydrogen-annealed ZnO:Al films”, Applied Surface Science, vol. 253, p. 7157, 2007. [77] G. Fang, D. Li, B. L. Yao, “Fabrication and vacuum annealing of transparent conductive AZO thin films prepared by DC magnetron sputtering”, Vaccum, vol. 68, p. 363, 2002. [78] C. G. Van de Walle, ”Hydrogen as a cause of doping in zinc oxide”, Physics Review Letters , vol. 85, p. 1012, 2000. [79] J. M. Lee, K. K. Kim, S. J. Park, W. K. Choi, ”Low-resistance and nonalloyed ohmic contacts to plasma treated ZnO”, Applied Physics Letters, vol. 78, p. 3842, 2001. [80] G. Fang, D. Li, B. L. Yao, ”Fabrication and vaccum annealing of transparent conductive AZO thin films prepared by DC magnetron sputtering”, Vaccum, vol. 68, p. 363, 2002. [81] Y. M. Strzhemechny, H. L. Mosbacker, D. C. Look, D. C. Look, D. C. Reynolds, C. W. Litton, N. Y. Garces, N. C. Giles, N. C. Giles, L. E. Halliburton, S. Niki, L. J. Brillson, ”Remote hydrogen plasma doping of single crystal ZnO”, Applied Physics Letters, vol. 84, p. 2545, 2004. [82] D. M. Hofmann, A. Hofstaetter, F. Leiter, H. Zhou, F. Henecker, B. K. Meyer, S. B. Orlinskii, J. Schmidt, P. G. Baranov, ”Hydrogen:a relevant shallow donor in zinc oxide”, Physical Review Letters, vol. 88, 2002. [83] H. C. Cheng, F. S. Wang, C. Y. Huang, ”Effects of NH_3 plasma passivation on N-channel polycrystalline silicon thin-film transistors”, IEEE Transactions on Electron Devices, vol. 44, p. 64, 1997.
摘要: 
本論文主要研究以溶膠凝膠法製備摻鋁氧化鋅(AZO)透明導電膜。其鋁與鋅的成分比為1.0 at. %,以Eagle 2000玻璃為AZO薄膜的基板,基板的應力點為666 ℃。在退火溫度操作於400~800 ℃,結果發現退火溫度在700 ℃時的電阻率為最佳,其阻值比其它退火溫度低10倍以上,而在可見光區超過86 %的高穿透率,與其它退火溫度的穿透率相比約少了有3~4 %。
在不同氣體氛圍實驗中,結果發現真空退火下有著最高的穿透率,大氣退火中的氧含量有助於AZO薄膜較為平坦,而氮氣退火可得最佳的結晶性和最低的電阻率,此電阻率與其它退火氛圍可減少1~2倍。
在本實驗以三種降溫方式,發現退火製程結束時,將爐管抽真空後降溫至室溫,所得到的電阻率比其它降溫方式可低30~180倍。最佳的製程為在700 ℃氮氣退火一小時後,將爐管抽至真空降溫至室溫。
製作成AZO薄膜後,以不同的射頻功率進行30分鐘電漿處理實驗,結果發現射頻功率25~100 W氫電漿處理後的AZO薄膜,其電阻率與未電漿處理相比至少減少了65 %。
最後,將試片置於空氣中,在室溫下觀察30天AZO薄膜的穩定度,發現未電漿處理與電漿處理後的試片,老化30天後皆約增加1倍。此老化結果意謂氫電漿處理可以有效防止AZO薄膜的老化。

The main purpose of this thesis is to fabricate the transparent conductive AZO (ZnO: Al) film by sol-gel method, the atomic ratio of Al and Zn in AZO film is 1 to 100. The films were spin coated on Eagle 2000 glass with strain point 666 ℃. The annealing temperature is operated between 400 to 800 ℃ which is across the strain point. The result shows that 700 ℃ anneal has the best resistivity, but reveals the worst transmittance in the visible region. The resistivity is more than ten times lower than that of the samples receiving other annealing temperature. The transmittance of 700 ℃ annealed samples is more than 86 % which is about 3 to 4 % less than that of samples with different anneal temperatures.
Different annealing ambient is also carried out in this research , the samples under vacuum annealing reveals the highest transmittance; samples annealed in air reveals a better surface in smoothness , while the samples annealed in nitrogen has the best crystallinity and lowest resistivity.
In addition, the cooling down process is modified with three different schemes; the slow cooling in vacuum can lead to the lowest resistivity. The improvement can be as high as 30 to 180 folds.
AZO films were then treated in hydrogen plasma with different RF power from 25 W to 100 W. The resistivity can be reduced to at least 65 % with hydrogen plasma treatment.
Finally, the samples were aged in air at room temperature for 30 days to see the stability of the AZO films. For both plasma treated and un-treated samples, the resistivity all increased two folds after 30 days. This aging result implicates that hydrogen plasma treatment can also effectively prevent the aging of the AZO films treatment AZO thin films.
URI: http://hdl.handle.net/11455/6750
其他識別: U0005-1908201104435100
Appears in Collections:電機工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.