Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/67709
標題: Maximum entropy analysis of the M- x /M/1 queueing system with multiple vacations and server breakdowns
作者: Wang, K.H.
Chan, M.C.
Ke, J.C.
關鍵字: batch arrival;Lagrange's method;maximum entropy;multiple vacation;server breakdowns;n-policy;time;period;models;m/g/1
Project: Computers & Industrial Engineering
期刊/報告no:: Computers & Industrial Engineering, Volume 52, Issue 2, Page(s) 192-202.
摘要: 
We consider a single unreliable sever in an M-[x]/M/l queueing system with multiple vacations. As soon as the system becomes empty, the server leaves the system for a vacation of exponential length. When he returns from the vacation, if there are customers waiting in the queue, he begins to serve the customers; otherwise, another vacation is taken. Breakdown times and repair times of the server are assumed to obey a negative exponential distribution. Arrival rate varies according to the server's status: vacation, busy, or breakdown. Using the maximum entropy principle, we develop the approximate formulae for the probability distributions of the number of customers in the system which is used to obtain various system performance measures. We perform a comparative analysis between the exact results and the maximum entropy results. We demonstrate, through the maximum entropy results, that the maximum entropy principle approach is accurate enough for practical purposes. (c) 2006 Elsevier Ltd. All rights reserved.
URI: http://hdl.handle.net/11455/67709
ISSN: 0360-8352
DOI: 10.1016/j.cie.2006.11.005
Appears in Collections:期刊論文

Show full item record
 

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.