Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/67809
標題: Active ingredients in Chinese medicines promoting blood circulation as Na+/K+-ATPase inhibitors
作者: Chen, R.J.Y.
Jinn, T.R.
Chen, Y.C.
Chung, T.Y.
Yang, W.H.
Tzen, J.T.C.
關鍵字: cardiac glycoside;ginsenoside;magnesium lithospermate B;neuroprotection;Na+/K+-ATPase inhibitors;blood circulation;steroid-like compound;traditional Chinese medicine;magnesium lithospermate-b;sodium-potassium pump;performance;liquid-chromatography;mediated signal-transduction;mass-spectrometry;uncaria-rhynchophylla;cerebral-ischemia;crystal-structure;in-vitro;trichosanthes-kirilowii
Project: Acta Pharmacologica Sinica
期刊/報告no:: Acta Pharmacologica Sinica, Volume 32, Issue 2, Page(s) 141-151.
摘要: 
The positive inotropic effect of cardiac glycosides lies in their reversible inhibition on the membrane-bound Na+/K+-ATPase in human myocardium. Steroid-like compounds containing a core structure similar to cardiac glycosides are found in many Chinese medicines conventionally used for promoting blood circulation. Some of them are demonstrated to be Na+/K+-ATPase inhibitors and thus putatively responsible for their therapeutic effects via the same molecular mechanism as cardiac glycosides. On the other hand, magnesium lithospermate B of danshen is also proposed to exert its cardiac therapeutic effect by effectively inhibiting Na+/K+-ATPase. Theoretical modeling suggests that the number of hydrogen bonds and the strength of hydrophobic interaction between the effective ingredients of various medicines and residues around the binding pocket of Na+/K+-ATPase are crucial for the inhibitory potency of these active ingredients. Ginsenosides, the active ingredients in ginseng and sanqi, substantially inhibit Na+/K+-ATPase when sugar moieties are attached only to the C-3 position of their steroid-like structure, equivalent to the sugar position in cardiac glycosides. Their inhibitory potency is abolished, however, when sugar moieties are linked to C-6 or C-20 position of the steroid nucleus; presumably, these sugar attachments lead to steric hindrance for the entrance of ginsenosides into the binding pocket of Na+/K+-ATPase. Neuroprotective effects of cardiac glycosides, several steroid-like compounds, and magnesium lithospermate B against ischemic stroke have been accordingly observed in a cortical brain slice-based assay model, and cumulative data support that effective inhibitors of Na+/K+-ATPase in the brain could be potential drugs for the treatment of ischemic stroke.
URI: http://hdl.handle.net/11455/67809
ISSN: 1671-4083
DOI: 10.1038/aps.2010.197
Appears in Collections:期刊論文

Show full item record
 

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.