Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/6781
標題: 應用於超寬頻與MIMO系統之矽鍺功率放大器設計與製作
Design and Implementation of SiGe Power Amplifier for UWB & MIMO System Application
作者: 陳楷順
Chen, Kai-Shuen
關鍵字: Ultra Wideband, MIMO;超寬頻;power amplifier;diode linearizer;SiGe BiCMOS;LC-ladder broadband matching;Dynamic bias control;多天線收發系統;功率放大器;二極體線性器;寬頻匹配;動態偏壓
出版社: 電機工程學系所
引用: [1] Kazimierz Siwiak and Debra McKeown, Ultra-wideband Radio Technology. UK: Wiley, 2004. [2] “Revision of Part 15 of the Commission's Rules Regarding Ultra-Wideband Transmission Systems,” First Report and Order, ET Docket 98-153, adopted Feb. 14, 2002, released July 15, 2002. [3] “UWB History.” [Online]. Available: http://www.multispectral.com/index.html [4] IEEE 802.15 WPAN High Rate Alternative PHY Task Group 3a (TG3a) [Online]. Available: http://www.ieee802.org/15/pub/TG3a.html [5] “DS-UWB Physical Layer Submission to 802.15 Task Group 3a.” [Online]. Available: ftp://ieee:wireless@ftp.802wirelessworld.com/15/04/15-04-0137-03- 003a-merger2-proposal-ds-uwb-update.doc [6] “Multi-band OFDM Physical Layer Proposal for IEEE 802.15 Task Group 3a.” [Online]. Available: ftp://ieee:wireless@ftp.802wirelessworld.com/15/Archive/ 2003/Jul03/03268r3P802-15_TG3a-Multi-band-CFP-Document.doc [7] Domenico Porcino and Walter Hirt, “Ultra-Wideband Radio Technology: Potential and Challenges Ahead,” IEEE Communications Magazine, vol. 47, No. 7, pp. 66-74, July 2003. [8] “Overview.” [Online]. Available: http://bwrc.eecs.berkeley.edu/Research/UWB/overview.htm [9] Pei-Der Tseng; Liyang Zhang; Guang-Bo Gao; Chang, M.F., “A 3-V monolithic SiGe HBT power amplifier for dual-mode (CDMA/AMPS) cellular handset applications,”Solid-State Circuits, IEEE Journal of Volume 35, Issue 9, Sept. 2000 [10] Joseph, A.J.; Dunn, J.; Freeman, G.; Harame, D.L.; Coolbaugh, D.; Groves, R.; Stein, K.J.; Volant, R.; Subbanna, S.; Marangos, V.S.; Onge, S.S.; Eshun, E.; Cooper, P.; Johnson, J.B.; Jae-Sung Rieh; Jagannathan, B.; Ramachandran, V.; Ahlgren, D.; Dawn Wang; Wang, X., “Product applications and technology directions with SiGe BiCMOS”Solid-State Circuits, IEEE Journal of Volume 38, Issue 9, Sept. 2003 [11] Cressler, J.D., “SiGe HBT technology: a new contender for Si-based RF and microwave circuit applications”Microwave Theory and Techniques, IEEE Transactions on Volume 46, Issue 5, Part 2, May 1998 [12] Pingxi Ma, Marco Racanelli, Jie Zheng, and Marion Knight, “A Novel Bipolar-MOSFET Low-Noise Amplifier (BiFET LNA), Circuit Configuration, Design Methodology, and Chip Implementation,” IEEE Trans. Microwave Theory Tech., vol. 51, no. 11, pp. 2175-2180, Nov. 2003. [13] B. Kim, J. S. Ko and K. Lee, “A New Linearization Technique for MOSFET RF Amplifier Using Multiple Gated Transistors,” IEEE Microwave and Guided Wave Letters, vol. 10, NO.9, September 2000. [14] G. Hau, T. B. Nishimura and N. Iwata, “A Highly Efficient Linearized Wide-Band CDMA Handset Power Amplifier Based on Predistortion Under Various Bias Conditions,” IEEE Trans. on Microwave Theory Tech., vol. 49, pp.1194-1201, June 2001. [15] K. Yamauchi, K. Mori, M. Nakayama, Y. Itoh and ect, “A Novel Series Diode Linearizer for Mobile Radio Power Amplifiers,” Microwave Symposium Digest, vol.2, pp. 831-834, 1996. [16] K. Yamauchi, K. Mori, M. Nakayama, Y. Mitsui, T. Takagi, “Microwave Miniaturized linearizer Using A Parallel Diode,” Microwave Symposium Digest, vol.3, pp. 1199-1202. [17] T. Yoshimasu, M. Akagi, N. Tanba and S. Hara, “An HBT MMIC Power Amplifier with an Integrated Diode Linearizer for Low-Voltage Portable Phone Application”, IEEE J. of Solid-State Circuits, Vol. 33, No. 9, pp. 1290-1296, 1998. [18] Jorge Aguirre and Calvin Plett, “A 0.1 - 50 GHz SiGe HBT distributed amplifier employing constant-k m-derived sections,” IEEE MTT-S Int. Microwave Symp. Dig., vol.2, 2003, pp. 923-926. [19] Ismail, A.; Abidi, A.A., “A 3-10-GHz low-noise amplifier with wideband LC-ladder matching network,”Solid-State Circuits, IEEE Journal of Volume 39, Issue 12, Dec. 2004 [20] Dedieu, H.; Dehollain, C.; Neirynck, J.; Rhodes, G., “A new method for solving broadband matching problems,”Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on see also Circuits and Systems I: Regular Papers, IEEE Transactions on Volume 41, Issue 9, Sept. 1994 [21] Chih-Yun Liu; Yi-Jan Emery Chen; Deukhyoun Heo, “Impact of bias schemes on Doherty power amplifiers”Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium on 23-26 May 2005 [22] Srirattana, N.; Raghavan, A.; Heo, D.; Allen, P.E.; Laskar, J.,”Analysis and design of a high-efficiency multistage Doherty power amplifier for wireless communications”Microwave Theory and Techniques, IEEE Transactions on Volume 53, Issue 3, Part 1, March 2005 [23] Choi, Y.H.; Kim, K.Y.; Kim, J.H.; Noh, Y.S.; Park, C.S.,“A MMIC smart power amplifier with on-chip dynamic bias controller for WCDMA mobile communication”, Radio and Wireless Conference, 2004 IEEE,19-22 Sept. 2004 [24] Kai Chang, Microwave Solid-State Circuits and Applications. New York: Wiley, 1994. [25] Guillermo Gonzalez, Microwave Transistor Amplifiers Analysis and Design. 2nd ed., New Jersey: Prentice Hall, 1997. [26] RF Power Amplifier for Wireless Communications Steve C.Cripps [27] Behzad Razavi, RF Microelectronics. New Jersey: Prentice Hall PTR, 1997. [28] High-Linearity RF Amplifier Design Peter B. KENINGTON [29] Ming-Jyh Hwu; Hsien-Chin Chiu; Shih-Cheng Yang; Yi-Jen Chan, “A novel double-recessed 0.2-/spl mu/m T-gate process for heterostructure InGaP-InGaAs doped-channel FET fabrication“Electron Device Letters, IEEE Volume 24, Issue 6, June 2003 [30] Hsien-Chin Chiu; Shih-Cheng Yang; Cheng-Kuo Lin; Ming-Jyh Hwu; Yi-Jen Chan,“0.2-/spl mu/m gate-length InGaP-InGaAs DCFETs for C-band MMIC amplifier applications“Electron Devices, IEEE Transactions on Volume 50, Issue 7, July 2003 [31] Reimer, C.J.; Smy, T.; Walkey, D.J.; Beggs, B.C.; Surridge, R., “A simulation study of IC layout effects on thermal management of die attached GaAs ICs“Components and Packaging Technologies, IEEE Transactions on Volume 23, Issue 2, June 2000 [31] Hyoung-Seok Oh; Taeksang Song; Sang-Hyun Baek; Euisik Yoon; Choong-Ki Kim, “A fully integrated 1 V, +9.5 dBm, 43%-PAE injection-locked Class-E power amplifier for wireless sensor network“Radio and Wireless Symposium, 2006 IEEE 17-19 Jan. 2006
摘要: 
由於進來晶片整合的重要性日益漸增,本論文使用與矽製程整合度佳的TSMC 0.35 m BiCMOS製程,提出三個功率放大器電路的設計與製作,分別針對線性度,頻寬與效率來設計,並分別應用在超寬頻系統與多天線收發系統的頻段上。線性度改善方面,工作頻段為2.4Ghz,使用BiFET電晶體架構與二極體線性器偏壓設計完成。寬頻改善方面,工作頻段為3.1-5Ghz,使用LC梯型匹配設計達到寬頻帶效果。效率改善方面,工作頻段為2.4Ghz,使用動態偏壓電路來改善較小輸入功率的效率。由於電路中,電晶體的特性佔了很重要的部份,因此論文中也分析兩顆並聯電晶體的特性並應用到電路上。

Due to the process progress of IC technology, the power amplifier(PA) plays a important role in wireless communication. Hence the thesis adopts 0.35um SiGe BiCMOS technology to design PA. Firstly the device characteristic of transistor is stydied in CH3. Secondly the design, implementation and measurement of three PAs are mentioned in CH4. The object of this thesis concentrated on linearity, broadband and efficiency for UWB & MIMO system application. The first PA uses BiFET and diode linearizer to improve linearity. The second PA uses LC-ladder matching to achieve broadband behavior. The third PA uses dynamic bias control to increase efficiency.
URI: http://hdl.handle.net/11455/6781
其他識別: U0005-2407200614120900
Appears in Collections:電機工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.