Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorKuo, Yi-Kaien_US
dc.identifier.citation[1] R. G. Gallager, ”Low Density Parity Check Codes,” IRE Trans. Inform. Theory, IT-8:21-28 January 1962. [2] C. Berrou, A. Glavieux, and P. Thitimajshima, ”Near Shannon limit Error Correcting Coding and Decoding: Turbo Codes,” Proc. IEEE Intl. Conf. Commun. (ICC 93), pp. 1064-70, Geneva Switzerland, May 1993. [3] C. E. Shannon, ”A Mathematical Theory of Communication,”Bell Syst. Tech. J., July 1948. [4] P. Elias, ”Error free coding,” IRE Trans. Inform. Theory, Sept. 1954. [5] L. M. G. Maria Alcoforado, C. da Rocha Jr. Valdemar, and G. Markarian, ”Turbo Block Codes for the Binary Adder Channel,” Information Theory, 2005. [6] Muladi, S.K. Yusof, and N.Fisal, ”Orthogonal Transmission of Block Turbo Coded MIMO Systems with Iterative Decoding,” RF and Microwave Conference, 2004. [7] Chen Yanni, Parhi, K. K. ”On the Performance and Implementation Issues of Block Turbo Code with Antenna Diversity,” Signals, Systems and Computers, 2002. [8] K. Cavalec-Amis, R. Pyndiah, ”Block Turbo Codes for Space-Times Systems” IEEE Publication Date: 27 Nov.-1 Dec. 2000. [9] Abdessamad ELBAZ, Ramesh PYNDIAH, Basel SOLAIMAN, and Omar AIT SAB ”Iterative Decoding of Product Codes with A Priori Information Over a Gaussian Channel for Still Image Transmission” Communication Theory, 1999. [10] Shu Lin, Daniel J. Costello, Error Control Coding, New Jerset, 2004. [11] R. M. Tanner, ”A Recursive Approach to Low Complexity Codes” IEEE Trans. Inform. Theory, September 1981.zh_TW
dc.description.abstract近年來,數位通訊常被運用在更有效率和彈性的傳輸資料服務,一般而言,這些服務和它們所需求的網路轉移必須在高速的狀態下傳送,更多叢集式封包結構在實體層上被傳送,故實體層需要多路存取和調變及編碼的技術,以便能更有效率的傳送這些種類的資料, 特別是當頻寬和功率的資源有限時,這種技術更是重要。 乘積碼是是一種有效率的通道編碼方式,它的編碼結構簡單,且可與調變結合實現,有不錯的頻寬使用效率,現今IEEE 802.16 即採用疊代的乘積碼為標準,此外在衛星通訊、無線網際網路、 微波系統、行動通訊系統的應用上,乘積碼也伴演重要角色,本篇所要探討的,便是乘積碼的研究,及一些新的編碼方式,來改善它的效能。zh_TW
dc.description.abstractDigital communications links are used for the efficient and flexible transmission of a wide range of data services. In general, as these services and their supporting networks migrate towards higher rate, more bursty packet oriented structures, it is important that the physical layer have both access techniques and modulation / coding techniques to efficiently convey this type of data. This is especially important in the many applications in which both bandwidth and power are limited resources. Product code is one kind of efficient channel coding techniques. It has an simple coding structure, and it is easy to combine it with modulation. It is also easy to increase spectrum efficiency. For it''s application, IEEE 802.16 takes the Iteration Product Codes for it''s standard. Beside it, In Satellite Communication, Wireless Network, Microwave system, and Mobile Communication System, Product codes become an important role of them. In this paper, we would study on product code, and then, we may find a new coding technique for it, to improve it''s performance.en_US
dc.description.tableofcontents第一章 序論 1 第二章 乘積碼簡介 3 2.1 乘積碼的結構與編碼方式 3 2.2 不完整的乘積碼 7 2.3 使用漢明碼或延伸漢明碼為單元碼的乘積碼 7 第三章 修正型乘積碼 10 3.1 隨機排列與編碼 10 3.2 修正型乘積碼的編碼與解碼 11 第四章 乘積碼的軟性決策解碼 23 4.1 以分解圖形為基準的軟性解碼 23 4.2 乘積碼的分解圖形 27 4.3 和積演算法 28 4.4 使用分解圖形對乘積碼作軟性決策解碼 36 4.5 將分解圖形應用於修正型乘積碼 44 第五章 結論 46zh_TW
dc.subjectProduct Codesen_US
dc.titleStudy on Modified Product Codesen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:電機工程學系所
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.