Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/68567
DC FieldValueLanguage
dc.contributor.authorLi, Z.C.en_US
dc.contributor.authorChen, S.Y.en_US
dc.contributor.authorChien, C.S.en_US
dc.contributor.authorChen, H.S.en_US
dc.date2011zh_TW
dc.date.accessioned2014-06-11T05:56:59Z-
dc.date.available2014-06-11T05:56:59Z-
dc.identifier.issn0010-4655zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/68567-
dc.description.abstractWe extend the study of spectral collocation methods (SCM) in Li et al. (2009) [1] for semilinear elliptic eigenvalue problems to that for a rotating Bose-Einstein condensation (BEC) and a rotating BEC in optical lattices. We apply the Lagrange interpolants using the Legendre-Gauss-Lobatto points to derive error bounds for the SCM. The optimal error bounds are derived for both H(1)-norm and L(2)-norm. Extensive numerical experiments on a rotating Bose-Einstein condensation and a rotating BEC in optical lattices are reported. Our numerical results show that the convergence rate of the SCM is exponential, and is independent of the collocation points we choose. (C) 2011 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USzh_TW
dc.relationComputer Physics Communicationsen_US
dc.relation.ispartofseriesComputer Physics Communications, Volume 182, Issue 6, Page(s) 1215-1234.en_US
dc.relation.urihttp://dx.doi.org/10.1016/j.cpc.2011.02.002en_US
dc.titleA spectral collocation method for a rotating Bose-Einstein condensation in optical latticesen_US
dc.typeJournal Articlezh_TW
dc.identifier.doi10.1016/j.cpc.2011.02.002zh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en_US-
item.openairetypeJournal Article-
item.grantfulltextnone-
item.fulltextno fulltext-
item.cerifentitytypePublications-
Appears in Collections:期刊論文
Show simple item record
 

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.