Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/6868
標題: 具有不明確的時變傳輸延遲之穩定網路控制方案的設計與實現
Design and Realization of Stabilizing Network Control Schemes with Uncertain Time-Varying Communication Delays
作者: 黃信彰
Huang, Hsin-Chang
關鍵字: TCP/IP;TCP/IP;network control;fuzzy control;neural network;網路控制;模糊控制;神經網路
出版社: 電機工程學系所
引用: [1] Kaplan, G., “Ethernet’s winning ways,” IEEE Spectrum, Vol. 38, pp.113-115 (2001). [2] Wei, Z., Branicky, M.S. and Phillips, S.M., “Stability of networked control systems,” IEEE. Control Systems Magazine, Vol. 21, pp. 84-99 (2001). [3] Walsh, G.C. and Ye, H., “Scheduling of networked control systems,” IEEE Control Systems Magazine, Vol. 21, pp. 57-65 (2001). [4] Walsh, G.C., Hong, Y. and Bushnell, L.G., “Stability analysis of networked control systems,” IEEE Transactions on Control Systems Technology, Vol. 10, pp. 438-446 (2002). [5] Nilsson, J. and Bernhardsson, B., “Analysis of real-time control systems with time delays,” Proceedings of the decision and control, Kobe, Vol. 3, pp. 3173-3178 (1996). [6] Hannaford, B. and Kim, W. S., “Force reflection, shared control, and time delay in telemanipulation,” Proceeding of IEEE international conference on systems, Man and cybernetics, Vol. 1, pp.133-137 (1989). [7] Buzan, F. T. and Sheridan, T. B., “A model-based predictive operator aid for telemanipulators with time delay,” Proceeding of IEEE international conference on systems, Man and cybernetics, Vol. 1, pp.138-143 (1989). [8] Lee, K. C., Lee, S. H. and Lee, M. H., “Remote fuzzy logic control of networked control system via Profibus-DP,” IEEE Transactions on Industrial Electronics, Vol. 50, pp. 784-792 (2003). [9] Ray, A. and Halevi, Y., “Integrated communication and control systems: Part II-Design Considerations,” ASME Journal of Dynamic Systems, Measurement and Control, Vol. 110, pp. 374-381 (1988). [10] Kim, Y.H., Kwon, W.H. and Park, H.S., “Stability and a scheduling method for network-based control systems,” Proceedings of the international conference on industrial electronics, control, and instrumentation, Taipei, Vol. 2, pp. 934-939 (1996). [11] Almutair, N.B., Chow, M.Y. and Tipsuwan, Y., “Network-based controlled DC motor with fuzzy compensation,” Proceedings of the IEEE annual conference on industrial electronics society, Denver, pp. 1844-1849 (2001). [12] Wang, Z., Yang, J., Tan, D. and Wang, X., “Compensation for the networked control systems with the long time delays,” Proceeding of international conference on systems, Man and cybernetics, Vol. 4, pp. 3170-3175 (2003). [13] Huang, J.Q. and Lewis, F.L, “Neural-network predictive control for nonlinear dynamic systems with time-delay,” IEEE Transactions on Neural Networks, Vol. 14, pp. 377-389 (2003). [14] Misra, V., Gong, W. B. and Towsley, D., “Fluid-based analysis of a network of AQM routers supporting TCP flows with an application to RED,” Proceeding of ACM/SIGCOMM Stockholm Sweden, pp. 151-160 (2000). [15] Hollot, C. V., Misra, V., Towsley, D., and Gong, W. B., “Analysis and design of controllers for AQM routers supporting TCP flows,” IEEE Transactions on Automatic Control, Vol. 47, pp. 945-959 (2002). [16] Laughlin, D. L., Rivera, D. E. and Morari, M., “Smith predictor design for robust performance,” International Journal of Control, Vol. 46, pp. 477-504 (1987). [17] Dorf, R.C. and Bishop, R.H., Modern Control Systems, Addision Wesley, (1995). [18] Mascolo, S., “Smith’s predictor for congestion control in TCP internet protocol,” Proceedings of the American control conference, San Diego, pp. 4441-4445 (1999). [19] Vidyasagar, M., “Control System Synthesis: A Factorization Approach,” Cambridge, MA: MIT Press (1985). [20] Larry, L. P. and Bruce, S. D., Computer Network: A Systems Approach, Morgan Kaufmann Publishers, San Francisco, Calif, (200). [21] Behrouz, A. F., TCP/IP protocol suite, McGraw-Hill, Boston, (2003). [22] Behrouz, A. F. and Sophia, C. F., Local Area Networks, McGraw-Hill, Taipei, (2004). [23] 白中和,「RS-232C技術詳解與應用」,全華科技圖書股份有限公司,臺北,(2001)。 [24] 范逸之、江文賢、陳立元,「C++ Builder與RS-232串列通訊控制」,文魁資訊股份有限公司,臺北,(2002)。 [25] 董勝源,「DSP TMS320LF2407與C語言控制實習」,長高科技圖書,台中,(2004)。 [26] 林容益,「TMS320F240X組合語言及C語言多功能控制應用」,全華科技圖書股份有限公司,臺北,(2005)。 [27] 新華電腦,「TI DSPLF2407A&MotorRUN實作訓練」,台科大圖書股份有限公司,臺北,(2003)。
摘要: 
在乙太網路環境下,要建立即時網路控制通常是非常困難的。由於乙太網路的載波多重媒體存取控制/碰撞偵測協定與擁塞效應會有不可預測的時間延遲特性,當封包在乙太網路上傳送時,常會產生傳輸延遲。這往往降低閉迴路控制系統性能,更而甚者,它會產生閉路不穩定現象。為了改善時間延遲造成的效應,本論文提出一種穩定網路控制系統的補償策略。我們在系統中加入一個模糊控制器與一個小波類神經網路,前者提供常態系統的基本控制功能,後者藉著快速學習機制,構成一史密斯估測器,以移除傳輸延遲對網路控制系統穩定性的影響。本研究亦建構一實質之網路控制系統,透過乙太網路控制一個直流伺服馬達。經由模擬與實驗驗證結果證明了本部分所提補償方案是極具效力的。

It is usually difficult to build a real-time (RT) control network using the standard TCP/IP and 10 BASE-T Ethernet, because the medium access control (MAC) protocol of 10 BASE-T Ethernet, the 1-persistent carrier sense multiple access with collision detection (CSMA/CD) protocol, has unpredictable time delay characteristics, and congestion effect caused queueing delay time. When RT packets are transported over an ordinary 10 BASE-T Ethernet, RT packets from a node may experience a large time delay. This may sometimes cause closed-loop instability and performance degradation. To improve the influence of time delays while maintaining performance, we propose a compensating scheme which consists of two compensators- a fuzzy-PID controller and a wavelet neuron network compensator. The proposed design is experimentally verified to show its effectiveness and superiority.
URI: http://hdl.handle.net/11455/6868
其他識別: U0005-2408200616304700
Appears in Collections:電機工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.