Please use this identifier to cite or link to this item:
標題: 利用FPGA實現雙可變磁阻馬達之驅動與電流控制
Implementation of A Current Controlled Double Switched Reluctance Motor Drive Using FPGA
作者: 鄭仲豪
Cheng, Chung-Hao
出版社: 電機工程學系所
引用: [1] R. M. Davis, “Variable reluctance rotor structures-their influence on torque production,” IEEE Trans. Ind. Electron., vol. 39, no. 2, pp. 168-174, Apr. 1992. [2] H. C. Lovatt and J. M. Stephenson, “Influence of number of poles per phase in switched reluctance motors,” IEE Proc. Electr. Power Appl., vol. 139, no. 4, pp. 307-314, July 1992. [3] R. Robinovici, “Scaling of switched reluctance motors,” IEE Proc. Electr. Power Appl., vol. 142, no 1, pp.1-4, Jan. 1995. [4] B. C. Mecrow, “New winding configurations for doubly salient reluctance machines,” IEEE Trans. Ind. Appl., vol. 32, no. 6, pp. 1348-1356, Nov./Dec. 1996. [5] A. C. Clothier and B. C. Mecrow, “Inverter topologies and current sensing methods for short pitched and fully pitched winding SR motors,” Darnell Group Inc. 2000. Applied Power Electronics Conference and Exposition, 1999. APEC ''99. Fourteenth Annual, vol. 1, 14-18 March 1999, pp. 416 – 423. [6] C. Pollock and B. W. Williams, “A unipolar converter for a switched reluctance motor,” IEEE Trans. Ind. Appl., vol. 26, no. 2, pp. 222-228, March/Apr., 1990. [7] M. Ehsain, I. Husdin, K. R. Ramini and J. H. Galloway, “Dual-decay converter for switched reluctance motor drives in low-voltage applications,” IEEE Trans. Power Electron., vol. 8, no. 2, pp. 224-230, Apr. 1993. [8] R. Krishnan and P. N. Materu, “Design of a single-switched-per-phase converter for switched reluctance motor drives,” IEEE Trans. Ind. Electron., vol. 37, no. 6, pp. 469-476, Dec. 1990. [9] S. Chan and H. R. Bolton, “Performance enhancement of single-phase switched-reluctance motor by DC link voltage boosting,” IEE Proc. Power Appl., vol. 140, no. 5, pp. 316-322, Sept. 1993. [10] S. Mir, I. Husain and M. E. Elbuluk, “Energy-efficient c-dump converters for switched reluctance motors,” IEEE Trans. Power Electron., vol. 12, no. 5, pp. 912-921, Sept. 1997. [11] H. K. Bae and R. Krishnan, “A study of current controllers and development of a novel current controller for high performance SRM drives,” IEEE Trans. Power Electron., vol. 11, no. 9, pp. 68-75, Oct. 1996. [12] I.Husian, “Minimization of torque ripple in SRM drives,” IEEE Trans. Ind. Electron., vol.49, no. 1, pp. 28-39, Feb. 2002. [13] S. K. Panda and P. K. Dash, “Application of nonlinear control to switched reluctance motors: a feedback linearisation approach,” IEE Proc. Power Appl., vol. 143, no. 5, pp. 371-379, Sept. 1996. [14] S. K. Panda, X. M. Zhu and P. K. Dash, “Fuzzy gain scheduled PI speed controller for switched reluctance motor drive,” IEEE Proc. IECON’97, vol. 3, pp. 989-994, Nov. 1997. [15] M. Ehsani and K. R. Ramani, “Direct control strategies based on sensing inductance in switched reluctance motors,” IEEE Trans. Power Electron., vol. 11, no. 1, pp. 74-82, Jan. 1996. [16] Benjamin C. Kuo, Automatic control systems, Prentice-Hall, pp.336, 1991. [17] S. K. Sahoo, S. K. Panda, “Indirect torque control of switched reluctance motors using iterative learning control,” IEEE Trans. Power Electron., vol. 20, no. 1, pp. 200-208, Jan. 2005. [18] C. C. Chan, Y. J. Zhan, K. T. Chau, “Stability analysis of fuzzy sliding mode controlled switched reluctance motor drives,” Power Electron. Special. Conf., vol. 2, 17-22 May 1998, pp. 1283-1289. [19] P. Laurent, M. Gabsi, B. Multon, “A new indirect position sensing with resonant method for switched reluctance motor,” Proc. of PCIM’93, Nurnberg, pp. 324-331, June 1993. [20] Henrik Huovila and Olavi Karasti, “A sensorless SR motor position measurement method,” Machine Automat., VTT Automat., Finland, 2003. [21] F. R. Salmasi, B. Fahimi, H. Gao, and M. Ehsani, “Robust sensorless rotor position detection in switched reluctance motors for low speed applications,” IEEE Trans. Power Electron., vol. 16, no. 8, pp. 839-843, June 2001. [22] Jean-Jacques E. Slotine and Weiping Li, Applied Nonlinear Control, New Jersey: Prentice Hall, 1991. [23] Giuseppe S. Buja, Roberto Menis, and Maria I. Valla, “Variable structure control of an SRM drive,” IEEE Trans. Ind. Electron., vol. 40,no. 1, pp 56-63, Feb. 1993. [24] 林瑞專, “Turn-on angle modulation in servo control of a switched reluctance motor,” Master’s degree thesis, NCHU, July 2001. [25] 邱志強, “A low-cost variable structure minimum-time optimal current controller of a switched reluctance motor, ” Master’s degree thesis, NCHU, July 2005. [26] Slobodan Vukosavic and Victor R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1047, Nov./Dec. 1991. [27] Frank L. Lewis and Vassilis L. Syrmos, Optimal Control, New York: Wiley, 1995. [28] “High CMR isolation amplifiers,” Technical Data, Hewlett Packard. [29] “Spatan-3 FPGA,” Part Number: XC3S200-4FT256C, Xilinx Inc., June. 2004.
本論文主旨有二,一是針對雙可變磁阻馬達的驅動設計出創新且低成本考量下的驅動器,另一個則是以FPGA(XILINX SPARTAN-3 )為控制平台來實現順滑模態控制法則達到最短時間電流追蹤的最佳控制。 經由可變磁阻馬達數學模型之分析與控制理論間之推導,證明本論文所完成的系統整合兼具忍受參數變化能力與抑制外來雜訊干擾能力(順滑模態控制)、以及最短時間(最佳控制)之優越效能。 由於驅動器是在低成本的考量下設計出來的,因此在同時驅動雙馬達的情況下會照成MOS開關共用導致過熱或燒毀的缺陷。 經由技巧性地安排PWM的開關時間,可幫助我們成功地克服驅動器缺陷。

The thesis has two points, one focuses on designing an innovative and low-cost drive for driving double switched reluctance motors (SRM); the other is to use FPGA (XILINX SPARTAN-3) to realize sliding-mode control algorithm which can achieve the minimum-time optimal current control. After reviewing the dynamic model of the four-phase 8/6 poles SRM and deriving control algorithm, proving the system integration that we designed with both the properties of parameter insensitivity and disturbance rejection (sliding-mode control) along with time optimality (Pontryagin's minimum principle). The drive is designed under the consideration of low cost, so it may cause MOS burned-out during driving double SRM. We arrange the on-off timing of PWM skillfully to overcome this drawback.
其他識別: U0005-2506200616303300
Appears in Collections:電機工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.