Please use this identifier to cite or link to this item:
標題: 在多路徑衰減通道下之盲蔽適應性通道縮減與頻域等化
Blind Adaptive Channel Shortening and Frequency Domain Equalizations in Multipath Fading Channels
作者: 曾宗揚
Zeng, Zong-Yang
關鍵字: 前置循環碼(CP);Cyclic prefix (CP);符號間干擾(ISI);通道縮減等化器(CSE);正交分頻多工(OFDM);分碼多工存取(CDMA);Inter-symbol interference (ISI);Channel-Shortening Equalizer (CSE);frequency-division multiplexing (OFDM);Code Division Multiple Access (CDMA)
出版社: 電機工程學系所
引用: [1].R. D. J. van Nee, G. A. Awater, M. Morikura, H. Takanashi, M. A. Webster, and K. W. Halford, “New high-rate wireless LAN standards,” IEEE Commun. Mag., vol. 37, no. 12, pp. 82-88, Dec. 1999. [2].Air Interface for Fixed Broadband Wireless Access Systems, MAC and Additional PHY Specifications for 2-11 GHz, IEEE Std. 802.16a, 2003, Edition. [3].Digital Video Broadcasting (DVB); Framing Structure, Channel Coding and Modulation for Digital Terrestrial Television, ETSI EN 300 744 V1.4.1, 2001. [4].——Radio Broadcasting System, Digital Audio Broadcasting (DAB) to Mobile, Portible, and Fixed Receivers, ETS 300 401, 1995-1997. [5].D. H. Layer, “Digital radio takes to the road,” IEEE Spectrum, vol. 38, pp. 40-46, Jul. 2001. [6].D. D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag., vol. 40, pp. 58-66, Apr. 2002. [7].H. Sari, G. Karam, and I. Jeanclaude, “Frequency-domain equalization of mobile radio and terrestrial broadcast channels,” in Proc. IEEE Global Communications Conf. (IEEE GLOBECOM), San Francisco, CA, Nov. 1994, pp. 1-5. [8].——, “Transmission techniques for digital terrestrial TV broadcasting,” IEEE Commun. Mag., pp. 100-109, Feb. 1995. [9].R. K. Martin, K. Vanbleu, M. Ding, G. Ysebaert, M. Milosevic, B. L. Evans, M. Moonen, and C. R. Johnson, Jr., “Unification and evaluation of equalization structures and design algorithms for discrete multitone modulation systems,” IEEE Trans. Signal Process., vol. 53, no. 10, pp. 3880-3894, Oct. 2005. [10].S. Qureshi and E. Newhall, “An adaptive receiver for data transmission over time-dispersive channels,” IEEE Trans. Inf. Theory, vol. 19, no. 4, pp. 448-457, Jul. 1973. [11].D. D. Falconer and F. R. Magee, “Adaptive channel memory truncation for maximum likelihood sequence estimation,” Bell Syst. Tech. J., pp. 1541-1562, Nov. 1973. [12].W. Lee and F. Hill, “A maximum-likelihood sequence estimator with decision-feedback equalization,” IEEE Trans. Commun., vol. 25, no. 9, pp. 971-979, Sep. 1977. [13].J. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “Equalizer training algorithms for multicarrier modulation systems,” in Proc. IEEE Int. Conf. Communications., Geneva, Switzerland, May 1993, pp. 761-765. [14].M. de Courville, P. Duhamel, P. Madec, and J. Palicot, “Blind equalization of OFDM systems based on the minimization of a quadratic criterion,” in Proc. IEEE Int. Conf. Communications, Dallas, TX, Jun. 1996, pp. 1318-1321. [15].R. K. Martin, J. Balakrishnan, W. A. Sethares, and C. R. Johnson, Jr., “A blind, adaptive TEQ for multicarrier systems,” IEEE Signal Process. Lett., vol. 9, no. 11, pp. 341-343, Nov. 2002. [16].J. Balakrishnan, R. K. Martin, and C. R. Johnson, Jr., “Blind, adaptive channel shortening by sum-squared auto-correlation minimization (SAM),” IEEE Trans. Signal Process., vol. 51, no. 12, pp. 3086-3093, Dec. 2003. [17].R. Nawaz and J. A. Chambers, “A novel single lag auto-correlation minimization (SLAM) algorithm for blind adaptive channel shortening,” presented at the Int. Conf. Acoustics, Speech, Signal Process. (ICASSP), Philadelphia, PA, Mar. 2005. [18].C. Chatterjee, V. P. Roychowdhury, J. Ramos, and M. D. Zoltowski, “Self-organizing algorithms for generalized eigen-decomposition,” IEEE Trans. Neural Netw., vol. 8, no. 6, pp. 1518-1530, Nov. 1997. [19].S. Celebi, “Interblock interference (IBI) minimizing time-domain equalizer (TEQ) for OFDM,” IEEE Signal Process. Lett., vol. 10, no. 8, pp. 232-234, Aug. 2003. [20].R. K. Martin, J. M. Walsh, and C. R. Johnson, Jr., “Low complexity MIMO blind, adaptive channel shortening,” IEEE Trans. Signal Process., vol. 53, no. 4, pp. 1324-1334, Apr. 2005. [21].D. Donoho, “On minimum entropy deconvolution,” in Applied Time Series Analysis II New York: Academic, 1981, pp. 565-608. [22].C. L. Nikias, “ARMA bispectrum approach to nonminimum phase system identification,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 36, pp. 513-525, Apr. 1988. [23].Shi Kun; Zhang Xudong, “A new CMA-based blind equalization for MIMO systems,” IEEE Trans. Signal Processing, vol. 1pp. 167-171, June 2004. [24].D. N. Godard, “Self-recovering equalization and carrier tracking in two dimensional data communication systems,” IEEE Trans. Commun., vol. COM-28, pp. 1867-1875, Nov. 1980. [25].A. Benveniste, M. Goursat, and G. Ruget, “Robust identification of a nonminimum phase system: Blind adjustment of a linear equalizer in data communications,” IEEE Trans. Automat. Contr., vol. AC-25, pp. 385-399, June 1980. [26].Y. Sato, “A method of self-recovering equalization for multi-level amplitude modulation,” IEEE Trans. Commun., vol COM-23, pp. 679-682, June 1975. [27].O. Shalvi and E. Weinstein, “New criteria for blind deconvolution of non-minimum phase systems (channels),” IEEE Trans. Inform. Theory, vol. 36, pp. 312-321, Mar. 1900. [28].J. R. Treichler and B. G. Agee, “A new approach to multipath correction of constant modulus signals,” IEEE Trans Acoust, Speech Signal Processing, vol. ASSP-31, pp. 349-372, Apr. 1983. [29].J. R. Treichler and M. G. Larimore, “New processing techniques based on the constant modulus adaptive algorithm,” IEEE Trans. Acoust., Speech Signal Processing, vol. ASSP-33, pp. 420-431, Apr. 1985 [30].S. Verd'u, B. D. O. Anderson, and R. A. Kennedy, “Blind equalization without gain identification,” IEEE Trans. Inform. Theory, vol. 39, pp. 292-297, Jan. 1993. [31].G. J. Foschini, “Equalization without altering or detect data,” AT&T Tech. J., pp. 1885-1911, Oct. 1985. [32].Z. Ding, R. A. Kennedy, B. D. O. Anderson, and C. R. Johnson Jr., “III-convergence of Godard blind equalizers in data communication systems,” IEEE Trans. Commun., vol. 39, pp. 459-472, Sept. 1991. [33].Y. Li and Z. Ding, “Convergence analysis of finite length blind adaptive equalizers,” IEEE Trans. Signal Processing, vol. 43, pp. 2120-2129, Sept. 1995. [34].J. R. Treichler, V. Wolff, and C. R. Johnson Jr., “observed misconvergence in the constant modulus adaptive algorithm,” in Proc. Asilomar Conf. Signals, systems and computers (Pacific Grove, CA, Oct. 1991), pp. 663.-667. [35].J. R. Treichler, C. R. Johnson, Jr., and M. G. Larimore, “Theory and Design of Adaptive Filter,” Prentice Hall, New York, 2001. [36].K. Wesolowski, “Self-recovering adaptive equalization algorithms for digital radio and voiceband data modems” in Proc. European Conf. Circuit Theory Design, 1987, pp. 19-24. [37].M. Larimore and J. Treichler, “Convergence behavior of the constant modulus algorithm,” in Proc. IEEE ICASSP, 1983, vol. 1.4, pp. 13-16.

Cyclic prefix (CP) is widely used to communication systems, because it is useful and robust to cancel Inter-symbol interference (ISI). CP this technique it not only can cancel ISI, but also to reduce the channel with the Channel-Shortening Equalizer (CSE).
This technique CSE is using this way that the length of channel is equal with the length of CP the last CP subtract the last symbol will be zero. Follow this way if other CPs with other copy symbols subtraction also zero or minimum to zero, the channel is equal to one tap channel for the transmission data. Using this way demodulate the transmission data, we can use the sample (one tap) frequency-domain equalization to restore it.
And orthogonal frequency-division multiplexing (OFDM) and Code Division Multiple Access (CDMA) is a popular transmission format for emerging wireless communication systems, including satellite radio, various wireless local area network (LAN) standards, and digital broadcast television. So in this paper we also use the CSE in the DS-CDMA and the OFDM-CDMA system.
其他識別: U0005-2107201123161100
Appears in Collections:電機工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.