Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/6937
標題: 混合型電動機車電能控制系統之研究
Study of Electric Energy Control System for Hybrid Electric Scooters
作者: 陳嘉男
Chen, Chia-Nan
關鍵字: fuel cell;燃料電池;HES;boundary layer sliding mode control;fuzzy inference control;robust control;邊界層滑動控制;模糊推論控制;強健控制
出版社: 電機工程學系所
引用: [1] A. Nasiri, V.S. Rimmalapudi, A. Emadi,; D.J. Chmielewski and S. Al-Hallaj, “Active control of a hybrid fuel cell-battery system,” Power Electronics and Motion Control Conference, Vol. 2, pp. 491-496, 2004. [2] R. Rizzo and L. Piegari, “An integrated control strategy for electric road vehicles equipped with fuel cells,” IEEE Power Tech Conference Proceedings, Vol. 4, pp. 5, 2003 [3] K. Rajashekara, “Power conversion and control strategies for fuel cell vehicles,” IEEE. Industrial Electronics Society, Vol. 3, pp. 2865-2870, 2003. [4] S.M.N Hasan, Kim Sikyung and I. Husain, “Power electronic interface and motor control for a fuel cell electric vehicle,” IEEE. Applied Power Electronics Conference , Vol. 2, pp.1171-1177, 2004. [5] Tae-Won Lee, Byoung-Kuk Lee, Su-Jin Jang, Sung-Ho Kim and Chung-Yuen Won, “Development of A 3 kW fuel cell generation system with an active fuel cell simulator topology, control, and design,” IEEE.Power Electronics Specialists Conference, Vol. 6, pp.4743-4748, 2004. [6] J.T. Pukrushpan, A.G. Stefanopoulou and Huei Peng, “Modeling and control for PEM fuel cell stack system,” Proceedings of American Control Conference, Vol.4, pp. 3117-3122, 2002. [7] J.B. Van der Merwe, C. Turpin, T. Meynard and B. Lafage, “The installation, modelling and utilisation of a 200 W PEM fuel cell source for converter based applications,” IEEE. Power Electronics Specialists Conference, Vol. 1, pp. 333-338, 2002. [8] Vancouver Heliocentris and BC. Canada, “Introduction to fuel cells and hydrogen technology,” Engineering Science and Education Journal, Vol. 11, pp. 205-216, 2002. [9] Y. Guezennec, Ta-Young Choi, G. Paganelli and G. Rizzoni, “Supervisory control of fuel cell vehicles and its link to overall system efficiency and low-level control requirements,” Proceedings of the American Control Conference, Vol. 3, pp. 2055-2061, 2003. [10 V. Naso, M. Lucentini and M. Aresti, “Evaluation of the overall efficiency of a low pressure proton exchange membrane fuel cell power unit,” Energy Conversion Engineering Conference and Exhibit, Vol. 2, pp. 147-1150, 2000. [11] M. Pagano and L. Piegari, “Electrical networks fed by fuel-cells for uninterruptible electrical supply,” Industrial Electronics, Proceedings of the IEEE International Symposium, Vol. 3, pp. 953-958, 2002. [12] H.L. Chan, “A new battery model for use with battery energy storage systems and electric vehicles power systems,” Power Engineering Society Winter Meeting, Vol. 1, pp. 470-475, 2000. [13]] Pang Shuo, J. Farrell, Du Jie and M. Barth, “Battery state-of-charge estimation,” Proceedings of the American Control Conference, Vol.2, pp. 1644-649, 2001. [14] S. Sato and A. Kawamura, “A new estimation method of state of charge using terminal voltage and internal resistance for lead acid battery,” Proceedings of the Power Conversion Conference, Vol. 2, pp. 565-570, 2002. [15] P. Gupta and A. Patra,; “A stable energy-based control strategy for DC-DC boost converter circuits,” IEEE. Power Electronics Specialists Conference, Vol. 5, pp. 3642-3646, 2004. [16] M. H. Rashid, “Power Electronics: Circuits, Devices, and Applications,” Prentice-Hall, Inc., 1988. [17] K. Adnades, “Torque analysis of permanent magnet synchronous motor,” IEEE Trans. Industry Applications, Vol. 26, pp. 695-701, 1991. [18] Hong-xing Wu, Shu-kang Cheng and Shu-mei Cui, “A controller of brushless DC motor for electric vehicle,” IEEE Transactions on Magnetics, Vol. 41, pp. 509-513, 2005. [19] Jung-Shan Lin and Li-Chen Fu, “Model analysis and controller design of electric motorcycles,” Proceedings of the American Control Conference, Vol. 4, pp. 2698-2702, 1999. [20] Y. Hori, Y. Toyoda and Y. Tsuruoka, “Traction control of electric vehicle based on the estimation of road surface condition,” Proceedings of the Power Conversion Conference, Vol. 1, pp. 1-8, 1997. [21] H. Sado, S. Sakai and Y. Hori, “Road condition estimation for traction control in electric vehicle,” Proceedings of the IEEE International Symposium on Industrial Electronics, Vol. 2, pp. 973-978, 1999. [22] V. Colli, G. Tomassi and M. Scarano, “Single Wheel Longitudinal Traction Control for Electric Vehicles,” IEEE Transactions on Power Electronics, Vol. 21, pp. 799-808, 2006. [23] Jean-Jacques E. Slotine and Weiping Li; “Applied nonlinear control,” Prentice-Hall, Inc, 1991. [24] 張佳祺,「超高電容器在蓄電池及燃料電池電動機車混成能源系統上的應用」,輔仁大學電子工程研究所,2003。 [25] 陳威志,「燃料電池參數設計知識庫之發展」,華梵大學工業管理研究所, 碩士論文,2003。 [26] 簡宜雄,「質子交換膜燃料電池性能之研究」,華梵大學機電工程研究所,碩士論文,2003。 [27] 楊志忠、林頌恩、韋文誠,「燃料電池的發展概況」,科學發展,2003。 [28] 鄭耀宗,「燃料電池與電動車輛」,科學發展, 2003。 [29] 莊雲羽,「質子交換膜燃料電池組之製作與性能最佳化研究」,國立中山大學機械與機電工程研究所,碩士論文,2002。 [30] 簡宜雄,「質子交換膜燃料電池性能之研究華梵大學」,華梵大學機電工程研究所,碩士論文,2003。 [31] 邱明利,「以截相式電流充電方法對鉛酸電池作快速充電最適化策略分析與實驗之研究」,彰化師範大學工業教育研究所,碩士論文,2000。 [32] 賀力行、李陳國,「台灣電動機車產業發展與競爭策略之分析,” 經濟情勢暨評論季刊-第五卷第一期,1999。 [33] 經濟部投資業務處,「電動車」,,中華民國十大新興工業投資機會調查,資料來源:工研院機械所。 [34] 吳南億,「以數位信號處理器為基礎之電動機車無刷馬達驅動器」,中山大學電機工程研究所,碩士論文,2000。 [35] 見成尚志、永守重信,「最新無刷直流馬達」,全華科技圖書公司,2001。 [36] 盧志榮,「無人飛行載具數位化伺服控制電路研究」,逢甲大學電機工程研究所,碩士論文,2003。 [37] 許得衛,「電動機車整合型管理系統之設計」,台灣大學電機工程研究所,碩士論文,2003。 [38] 林俊良,「智慧型控制分析與設計」,全華科技圖書公司,2005。 [39] 陳永平、張浚林,「可變結構控制設計」,全華科技圖書公司,台北,1999。
摘要: 
本論文提出一種應用於燃料電池及蓄電池混合電能機車之控制系統。此控制系統主要可分成二部分;首先我們提出雙模式機車速度控制器,包含強健模式及經濟模式。在強健模式中,為實現強健之速度命令追蹤響應,我們提出邊界層滑動控制技術產生馬達控制命令之控制策略。相對之下,在經濟模式中主要考慮的並非是速度追蹤性能,而是訴求機車之驅動效率及電能的節省,尤其是在機車騎士不當地操作電動油門時。為此我們提出模糊推論控制技術來修正馬達之控制命令。
其次在第二部份,我們提出機車之電能管理系統來改善燃料經濟性。其主要考慮燃料電池之輸出效能,蓄電池之蓄電狀態及馬達功率需求大小。為此我們設計系統化的電能控制方法來實現管理目的。
在本研究中,我們先介紹電動機車系統的元件及相關特性,分析其動態行為並建立其數學模式,然後提出所設計之控制器,包括可適應未知參數及干擾獲得較佳速度響應之強健模式,及減少電能浪費之經濟模式之雙模式機車速度控制器;及具有較佳電能使用效率及保護策略之電能管理系統電動機車。最後我們使用Matlab軟體的Simulink模擬器建立相關控制器之模擬系統,並由其模擬結果證實系統的可行性及有效性。

This thesis proposes a novel control system for a fuel cell and battery hybrid electric scooter (HES). In the first part, we propose a dual mode (robust mode and economy mode) HES speed controller. The robust control strategy is designed to achieve the robust speed command tracking and to perform a better response. A boundary layer sliding mode control technique is utilized to generate a motor control input in the proposed robust mode. Furthermore, considering the driving efficiency, the economy mode is designed to reduce the electric energy waste while an inappropriate accelerator command has been input to system from the rider. In this proposed control strategy, we use a fuzzy inference control technique to generate an appropriate correction to motor control command.
In the second part, an energy management system is proposed to improve fuel economy for HES through the considerations of fuel cell output efficiency, battery energy state, regenerative braking energy and the power demand. A power control strategy is designed to control the power flow of electric energy.
In this thesis, firstly the control system components and their characteristics are introduced. Then we illustrate an analysis of the dynamic behavior and establish a complete mathematical model for the HES. Secondly, the dual mode speed controller is designed to adapt the load disturbances and parameter variation such that the objects of speed control and energy saving are achieved. Besides, the energy management system is designed to regulate the electric energy demand between fuel cell and battery for energy saving and component protection. Finally, the effects of the proposed system have been discussed based on the results of computer simulations.
URI: http://hdl.handle.net/11455/6937
其他識別: U0005-2508200615095200
Appears in Collections:電機工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.