Please use this identifier to cite or link to this item:
標題: Salinity-dependent expression of the branchial Na+/K+/2Cl(-) cotransporter and Na+/K+-ATPase in the sailfin molly correlates with hypoosmoregulatory endurance
作者: Yang, W.K.
Kang, C.K.
Chen, T.Y.
Chang, W.B.
Lee, T.H.
關鍵字: Salinity tolerance;Na+/K+/2Cl(-) cotransporter;Na+/K+-ATPase;Gill;Osmoregulation;Sailfin molly;tilapia oreochromis-mossambicus;mitochondrion-rich cells;cation-chloride-cotransporters;eel anguilla-anguilla;fresh-water;poecilia-latipinna;messenger-rna;differential expression;molecular;physiology;euryhaline tilapia
Project: Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology
期刊/報告no:: Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology, Volume 181, Issue 7, Page(s) 953-964.
In the branchial mitochondrion-rich (MR) cells of euryhaline teleosts, the Na+/K+/2Cl(-)cotransporter (NKCC) is an important membrane protein that maintains the internal Cl -concentration, and the branchial Na+/K+-ATPase (NKA) is crucial for providing the driving force for many other ion-transporting systems. Hence this study used the sailfin molly (Poecilia latipinna), an introduced aquarium fish in Taiwan, to reveal that the potential roles of NKCC and NKA in sailfin molly were correlated to fish survival rates upon salinity challenge. Higher levels of branchial NKCC were found in seawater (SW)-acclimated sailfin molly compared to freshwater (FW)-acclimated individuals. Transfer of the sailfin molly from SW to FW revealed that the expression of the NKCC and NKA proteins in the gills was retained over 7 days in order to maintain hypoosmoregulatory endurance. Meanwhile, their survival rates after transfer to SW varied with the duration of FW-exposure and decreased significantly when the SW-acclimated individuals were acclimated to FW for 21 days. Double immunofluorescence staining showed that in SW-acclimated sailfin molly, NKCC signals were expressed on the basolateral membrane of MR cells, whereas in FW-acclimated molly, they were expressed on the apical membrane. This study illustrated the correlation between the gradual reductions in expression of branchial NKCC and NKA (i.e., the hypoosmoregulatory endurance) and decreasing survival rates after hyperosmotic challenge in sailfin molly.
ISSN: 0174-1578
DOI: 10.1007/s00360-011-0568-0
Appears in Collections:期刊論文

Show full item record

Google ScholarTM




Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.