Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorGuo-Shing Huangen_US
dc.contributorCheng-Yuan Changen_US
dc.contributor.advisorChing-Chih Tsaien_US
dc.contributor.authorChuang, Kun-Hsienen_US
dc.identifier.citation參考文獻 [1] 任正隆,吊車系統利用視覺回授之滑動模式控制,國立中央大學電機工程學系碩士論文,2006年。 [2] 王智輝,應用影像處理技術於起重機搖晃抑制之研究,國立勤益科技大學電子工程學系碩士論文,2009年。 [3] Y. Fang, W. E. Dixon, D.M. Dawson and E. Zergeroglu, “Nonlinear coupling control laws for an underactuated overhead crane system,” IEEE/ASME Transactions on Mechatronics, vol.8, no. 3, pp. 418-423, 2003. [4] M. Mahfouf, C H. Kee, M. F. Abbod, D. A. Linkens, "Fuzzy logic based anti-sway control design for overhead cranes," Neural Computation Applications, vol. 9 , pp .38–43 , 2000. [5] C.Y. Chang, "Adaptive fuzzy controller of the overhead cranes with nonlinear disturbance," IEEE Transactions Industry Applications, vol. 3, pp.164–172, 2007. [6] H. H. Lee, “Modeling and control of three-dimensional overhead crane,” ASME Transactions, Journal of Dynamic Systems, Measurement, and Control, vol. 120, no. 4 , pp. 471–476, 1998. [7] T. Matsuo, R. Yoshino, H. Suemitsu, and K. Nakano, “Nominal performance recovery by PID+Q controller and its application to antisway control of crane lifter with visual feedback,” IEEE Transactions on Control Systems Technology, vol. 12, no. 1,pp.156-166, 2004. [8] T. Matsuo and K. Nakano, “Robust stabilization of closed-loop systems by PID+Q controller,” International Journal of Control, vol. 70, no. 4, pp. 631-650, 1998. [9] Y. Fang, W. E. Dixon, D.M. Dawson and E. Zergeroglu, “Nonlinear coupling control laws for an underactuated overhead crane system,” IEEE/ASME Transactions on Mechatronics, vol.8, no. 3, pp. 418-423, 2003. [10] M. A. Karkoub, M.Zribi, "Modeling and energy based nonlinear control of crane lifters, " IEE Proceedings Control Theory Applications, vol. 149, pp.209–215, 2002. [11] M. J. Agostini, G. G. Parker, H. Schaub, K. Groom, R. D. Robinett, "Generating swing-suppressed maneuvers for crane systems with rate saturation," IEEE Transactions on Control Systems Technology, vol. 11, pp.471–481, 2003. [12] 張嘉勝,球型倒單擺控制系統之設計與實作,國立中興大學電機工程學系碩士論文,2010年。 [13] C. M. Lin, Y. J. Mon,“ Decoupling Control by Hierarchical Fuzzy Sliding-Mode Controller, ”IEEE Transactions on Control Systems Technology, vol. 13, no. 4,pp. 593-598, July 2005. [14] W. Wang, X. D. Liu, J. Q. Yi. “Structure design of two types of sliding-mode controllers for a class of under-actuated mechanical systems,” IET Control Theory and Applications, vol. 1, no 1, pp. 163-172, 2007.zh_TW
dc.description.abstract中文摘要 本論文針對3D高架型起重機系統,提出一滑動模式控制方法,用以完成點穩定與軌跡追蹤。為推導出完整之數學模型,本文利用拉格朗日運動方程式,推導出3D起重機系統之完整、耦合的動態數學模型,並進一步考量在六種特殊運動情況(單軸與雙軸運動),得到其簡化的數學模型。接著,以此一完整耦合與五個簡化模型,運用階層式滑動模式控制與倒逆步控制等方法,設計3D起重機系統之單軸運動、雙軸運動與三軸耦合控制器。最後,為說明所提控制器之可行性與效用性,運用Matlab/Simulink模擬程式,並採用3D門式貨櫃起重機之實際規範及參數,進行控制系統之模擬,並調整控制器之參數,其模擬結果說明3D起重機可快速且精準地達成點穩定與軌跡追蹤和維持負載微小搖擺之雙重目的。zh_TW
dc.description.abstractAbstract This thesis develops a sliding-model motion control method for point stabilization and trajectory tracking of a 3D crane system. A completely mathematical model of the system is derived using Lagrangian mechanics, and the model is then reduced according to six special cases: three single-axis motions and three double axial motions. With the complete and reduced models, an aggregated hierarchical sliding mode control approach together with backstepping technique is employed to synthesize six motion controllers for the 3D crane system, in order to accomplish out precise motion control and maintain the anti-swing angle as small as possible. The feasibility and effectiveness of the proposed controllers are well exemplified by conducting simulations on a 3D crane system with actual parameters. Simulations results via Matlab / Simulink indicate that the proposed controllers have been shown capable of achieving fast and precise motion control performance and satisfactory anti-swing angle responses in presence of possible load changes.en_US
dc.description.tableofcontents目 次 中文摘要 i Abstract ii 誌 謝 iii 目 次 iv 圖目錄 vii 表目錄 ix 第一章 緒論 1 1.1 前言 1 1.2 相關文獻回顧 2 1.3 研究動機與目的 3 1.4 主要貢獻 4 1.5 章節組織 4 第二章 3D 起重機之系統描述與建模 6 2.1前言 6 2.2 3D高架型起重機系統描述 6 2.3數學建模 9 2.3.1完整的3D 起重機系統之數學模型推導 9 2.4模型簡化與驗證 16 2.4.1 TROLLEY單軸運動之動態模型 16 2.4.2 GANTRY單軸運動之動態模型 17 2.4.3 HOIST單軸運動之動態模型 18 2.4.4 TROLLEY及 HOIST雙軸運動之動態模型 19 2.4.5 TROLLEY及GANTRY雙軸運動之動態模型 20 2.4.6 TROLLEY、GANTRY、HOIST三軸同動的動態模型 23 2.5本章結論 27 第三章 單軸控制器設計及電腦模擬 28 3.1前言 28 3.2解耦控制器設計 28 3.2.1順滑模式控制理論說明 28 3.2.2 階層式滑動模式控制 29 3.2.3 3D起重機系統Trolley方向之控制器設計 29 3.2.4 3D起重機系統Gantry方向之控制器設計 32 3.2.5 3D起重機系統Hoist方向之控制器設計 36 3.3電腦模擬與討論 38 3.3.1 Trolley方向控制系統電腦模擬 38 3.3.2 Gantry方向控制系統電腦模擬 41 3.3.3 Hoist方向控制系統電腦模擬 43 3.4本章結論 45 第四章 雙軸控制器設計及電腦模擬 47 4.1前言 47 4.2雙軸耦合控制器設計 47 4.2.1 Trolley與 Hoist雙軸耦合運動方向耦合控制器設計 47 4.2.2 Trolley與Gantry雙軸耦合運動方向耦合控制器設計 54 4.3電腦模擬與討論 61 4.3.1 Trolley、Hoist耦合控制系統方塊圖及電腦模擬 61 4.3.2 Trolley與Gantry雙軸耦合控制系統方塊圖及電腦模擬 65 4.4本章結論 69 第五章 三軸控制器設計及電腦模擬 71 5.1前言 71 5.2 TROLLEY、GANTRY以及HOIST三軸耦合運動控制器設計 71 5.3電腦模擬與討論 80 5.3.1點對點運動控制模擬 81 5.3.2直線軌跡追蹤運動控制模擬 84 5.3.3軌跡追蹤運動控制模擬 88 5.4本章結論 93 第六章結論與未來展望 94 6.1結論 94 6.2 未來研究建議 95 參考文獻 96zh_TW
dc.titleSliding-Mode Motion Control of a 3D Crane Systemen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:電機工程學系所
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.