Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/70486
DC FieldValueLanguage
dc.contributor.authorLi, Y.C.en_US
dc.contributor.authorShaw, S.Y.en_US
dc.date2003zh_TW
dc.date.accessioned2014-06-11T05:59:54Z-
dc.date.available2014-06-11T05:59:54Z-
dc.identifier.issn0025-5645zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/70486-
dc.description.abstractLet T(.) be a (not necessarily exponentially bounded, not necessarily nondegenerate) alpha-times integrated C-semigroup and let -B be the generator of a (C-0)-group S(.) commuting with T(.) and C. Under suitable conditions on T(.) and S(.) we prove the existence of an alpha-times integrated C-semigroup V(.), which has generator (A+B) over bar provided that T(.) is nondegenerate and has generator A. Explicit expressions of V(.) in terms of T(.) and S(.) are obtained. In particular, when B is bounded, V(.) can be constructed by means of a series in terms of T(.) and powers of B.en_US
dc.language.isoen_USzh_TW
dc.relationJournal of the Mathematical Society of Japanen_US
dc.relation.ispartofseriesJournal of the Mathematical Society of Japan, Volume 55, Issue 4, Page(s) 1115-1136.en_US
dc.relation.urihttp://dx.doi.org/10.2969/jmsj/1191418767en_US
dc.subject(C-0)-groupen_US
dc.subjectalpha-times integrated C-semigroupen_US
dc.subjectsubgeneratoren_US
dc.subjectgeneratoren_US
dc.subjectperturbation theoremen_US
dc.subjectabstract cauchy-problemen_US
dc.subjectlaplace transformsen_US
dc.subjectcosine functionsen_US
dc.subjecthille-yosidaen_US
dc.titlePerturbation of non-exponentially-bounded alpha-times integrated C-semigroupsen_US
dc.typeJournal Articlezh_TW
dc.identifier.doi10.2969/jmsj/1191418767zh_TW
item.openairetypeJournal Article-
item.fulltextno fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en_US-
Appears in Collections:期刊論文
Show simple item record
 

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.