Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/7071
標題: 非完整拘束輪型行動機器人之智慧適應同時軌跡追蹤與點對點控制
Intelligent Adaptive Simultaneous Tracking and Stabilization for Nonholonomic Wheeled Mobile Robots
作者: 謝世民
Hsieh, Shih-Min
關鍵字: simultaneous tracking and stabilization;軌跡追蹤與點對點控制;sliding-mode control;fuzzy wavelet network;倒逆步順滑模態;模糊小波網路理論
出版社: 電機工程學系所
引用: [1] B. Tribelhorn, and Z. Dodds, “Evaluating the Roomba: A low-cost, ubiquitous platform for robotics research and education,” in Proc. of IEEE International Conference on Robotics and Automation, Roma, Italy, April, 2007, pp, 1393-1399. [2] C. P. Connette, C. Parlitz, B. Graf, M. Hagele, A. Verl, “The mobility concept of Care-O-bot 3,” in Proc. of 39th International Symposium on Robotics, Seoul, Korea, October, 2008, pp. 746-750. [3] K. Namera1, S. Takasugi1, K. Takano, T. Yamamoto and Y. Miyake, “Timing control of utterance and body motion in human-robot interaction,” in Proc. of the 17th IEEE International Symposium on Robot and Human Interactive Communication, Munich, Germany, August, 2008, pp. 119-123. [4] K. Masashi, H. Yuji, M. Toshio, “Humanoid robots,” Hitachi Review, vol. 58, no. 4, pp. 151-156, 2009. [5] R. Brooks, L. Aryananda, A. Edsinger, P. Fitzpatrick, C. Kemp, U. M. O''Reilly, E. Torres-Jara, P. Varcshavskaya, J. Weber, “Sensing and manipulating built-for-human environments,” International Journal of Humanoid Robotics, vol. 1, no. 1, pp. 1-28, 2004. [6] R. W. Brockett, “Asymptotic stability and feedback stabilization,” Differential Geometric Control Theory, ed. By R. W. Brockett, R. S. Millman, and H. H. Sussmann, 1983. [7] W. E. Dixon, D. M. Dawson, E. Zergeroglu, A. Behal, Nonlinear control of wheeled mobile robots, Springer, 2001. [8] Y. J. Kanayama, Y. Kimura, F. Miyazaki, T. Noguchi, “A stable tracking control scheme for an autonomous mobile robot,” in Proc. of IEEE International Conference on Robotics and Automation, 1990, pp. 384-389. [9] T. Fukao, H. Nakagawa, N. Adachi, “Adaptive tracking control of a nonholonomic mobile Robot,” IEEE Transactions on Robotics and Automation, vol. 16, no 5, pp. 609-615, 2000. [10] W. Oelen, J. Amerongen Van, “Robust tracking control of two-degree-freedom mobile robots,” Control Engineering Practice, vol. 2, pp. 333-340, 1994. [11] Z. P. Jiang, H. Nijmeijer, “Tracking control of mobile robots: A case study in backstepping,” Automatica, vol. 33, pp. 1393-1399, 1997. [12] P. Soueres and J. P. Laumond, “Shortest paths synthesis for a car-like robot,” IEEE Transactions on Automatic Control, vol. 41, no 5, pp. 672-688, 1996. [13] C. Y. Chen, T. H. S. Li, Y. C. Tsai, “EP-based kinematic control and adaptive fuzzy sliding-mode dynamic control for wheeled mobile robots,” Information Sciences, vol. 179, pp. 180-195, 2009. [14] J. C. Lo, Y. H. Kuo. “Decoupled fuzzy sliding-mode control,” IEEE Transactions on Fuzzy Systems, vol. 6, no 3, pp. 426-435, 1998. [15] C. M. Lin, Y. J. Mon, “Decoupling control by hierarchical fuzzy sliding-mode controller,” IEEE Transactions on Control System Technology, vol. 13, no 4, pp. 593-598, 2005. [16] W. Wang, J. Yi, D. Zhao, D. Liu, “Design of a stable sliding-mode controller for a class of second order underactuated systems,” IEE Proceedings Control Theory and Applications, vol. 151, no 6, pp. 683-690, 2004. [17] W. Wang, X. D. Liu, J. Q. Yi. “Structure design of two types of sliding-mode controllers for a class of under-actuated mechanical systems,” IET Control Theory and Applications, vol. 1, no 1, pp. 163-172, 2007. [18] A. M. Bloch, S. Drakunov, “Stabilization of a nonholonomic system via sliding modes,” in Proc. of IEEE International Conference on Decision and Control, Lae Buena Vista, FL, 1994, pp. 2961-2963. [19] T. H. S. Li, Y. C. Huang, “MIMO adaptive fuzzy terminal sliding-mode controller for robotic manipulators,” Information Sciences, vol. 180, no 23, pp. 4641-4660, 2010. [20] S. Bentalba, A. E. Hajjaji, A. Rachis, “Fuzzy control of a mobile robot: a new approach,” in Proc. of IEEE International Conference on Decision and Control, Hartford, CT, pp. 69-72, 1997. [21] R. K. Barai, K. Nonami, “Optimal two-degree-of-freedom fuzzy control for locomotion control of a hydraulically actuated hexapod robot,” Information Sciences, vol. 177, no 8, pp. 1892-1915, 2007. [22] H. C. Huang and C. C. Tsai, “Adaptive robust control of an omnidirectional mobile platform for autonomous service robots in polar coordinates,” Journal of Intelligent and Robotic Systems, vol. 51, no. 4, pp. 439-460, 2008. [23] H. C. Huang and C. C. Tsai, “Adaptive robust self-balancing and steering of a two-wheeled human transportation vehicle,” Journal of Intelligent and Robotic Systems, vol. 62, no. 1, pp. 103-123, 2011. [24] R. Fierro, F. L. Lewis, “Control of a nonholonomic mobile robot using neural networks,” IEEE Transactions on Neural Networks, vol. 9, no 4, pp. 589-600, 1998. [25] K. D. Do, Z. P. Jiang, J. Pan, “A global output-feedback controller for simultaneous tracking and stabilization of unicycle-type mobile robots,” IEEE Transactions on Robotics and Automation, vol. 20, no 3, pp. 589-594, 2004. [26] K. D. Do, Z. P. Jiang, J. Pan, “Simultaneous tracking and stabilization of mobile robots: an adaptive approach,” IEEE Transactions on Automatic Control, vol. 49, no 7, pp. 1147-1151, 2004. [27] P. Morin, C. Samson, “Control of nonholonomic mobile robot based on the transverse function approach,” IEEE Transactions on Robotics, vol. 25, no 5, pp. 1058-1073, 2009. [28] I. Kanellakopoulos, P. V. Kokotovic, A. S. Morse. “Systematic design of adaptive controllers for feedback linearizable systems,” IEEE Transactions on Automatic Control, vol. 36, no 11, pp. 1241-1253, 1991. [29] M. Krstic, I. Kanellakopoulos, P. V. Kotovic, Nonlinear and adaptive control design, John Wiley & Sons, Inc., 1995. [30] S. Jagannathan, “Robust backstepping of robotic system using neural networks,” in Proc. of 37th IEEE International Conference on Decision and Control, vol. 1, 1998, pp. 943-948. [31] S. S. Ge, “Advanced control techniques of robotic manipulators,” in Proc. of American Control Conference, vol. 4, Jun., 1998, pp. 2185-2199. [32] G. Wilson, R. D. Robinett, “Robust adaptive backstepping control for a nonholonomic mobile robot,” in Proc. of IEEE International Conference on System, Man, and Cybernetics, vol. 5, 2001, pp. 3241-3245. [33] Q. Yuan, F. Qian, W. Du, “A hybrid genetic algorithm with the Baldwin effect,” Information Sciences, vol. 180, no 5, pp. 640-652, 2010. [34] L. M. Adeleman, “Molecular computing of solutions to combinational problems,” Science, New Series, vol. 266, no 5187, pp. 1021-1024, 1994. [35] N. Y. Shi, C. P. Chu, “A molecular solution to the hitting-set problem in DNA-based supercomputing,” Information Sciences, vol. 180, no 6, pp. 1010-1019, 2010. [36] C. L. Lin, H. Y. Jan, T. H. Huang, “Self-organizing PID control design based on DNA computing method,” in Proc. of IEEE International Conference on Control Applications, 2004, pp. 568-573. [37] Y. Zhu, Y. Ding, W. Li, L. A. Zadeh, “DNA algorithm of image recognition and its application,” in Proc. of IEEE International Conference on Information Reuse and Integration, 2006, pp. 375-379. [38] X. Liu, Y. Li, “Efficient DNA algorithms for chromatic number of graph problems,” in Proc. of IEEE International Conference on Automation and Logistics, 2007, pp. 450-454. [39] M. H. Garzon, R. J. Deaton, “Biomolecular computing and programming,” IEEE Transactions on Evolutionary Computation, vol. 3, pp. 236-250, 1999. [40] Y. Ding and L. Ren, “DNA genetic algorithm for design of the generalized membership-type Takagi-Sugeno fuzzy control system,” in Proc. of IEEE International Conference on Systems, Man, and Cybernetics, 2000, pp. 3862-3867. [41] H. C. Huang, C. C. Tsai, T. S. Wang, “Kinematics motion planning of an omnidirectional mobile manipulator using DNA algorithm,” in Proc. IEEE International Conference on Industrial Electronics, Taipei, Taiwan, 2007, pp. 2706-2711. [42] H. C. Huang and C. C. Tsai, “FPGA Implementation of an embedded robust adaptive controller for autonomous omnidirectional mobile platform,” IEEE Transactions on Industrial Electronics, vol. 56, no. 5, pp. 1604-1616, 2009. [43] C. C. Tsai, H. C. Huang, S. C. Lin, “FPGA-based parallel DNA algorithm for optimal configurations of an omnidirectional mobile service robot performing fire extinguishment,” IEEE Transactions on Industrial Electronics, vol. 58, no 3, pp. 1016-1026, 2011. [44] W. E. Dixon, D. M. Dawson, F. Zhang, E. Zergeroglu, “Global exponential tracking control of a mobile robot system via a PE condition,” IEEE Transactions on Systems, Man and Cybernetics-part B, vol. 30, pp. 129-142, 2000. [45] Y. Hosoda, S. Egawa, J. Tamamoto, K. Yamamoto, R. Nakamura, M. Togami, “Basic design of human-symbiotic robot EMIEW,” in Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 2006, pp. 5079-5084. [46] M. Sasaki, N. Yanagihara, O. Matsumoto, K. Komoriya, “Steering control of the personal riding-type wheeled mobile platform (PMP),” in Proc. of IEEE International Conference on Intelligent Robots and Systems, 2005, pp. 1697-1702. [47] F. Grasser F, A. D'Arrigo, S. Colombi, A. C. Ruffer, “JOE: a mobile, inverted pendulum,” IEEE Transactions on Industrial Electronics, vol. 49, no 1, pp. 107-114, 2002. [48] K. Pathak, J. Franch, S. K. Agrawal, “Velocity and position control of a wheeled inverted pendulum by partial feedback linearization,” IEEE Transactions on Robotics, vol. 21, no 3, pp. 505-513, 2005. [49] Y. S. Ha, S. Yuta, “Trajectory tracking control for navigation of the inverse pendulum type self-contained mobile robot,” Robotics and Autonomous Systems, vol. 17, no 1-2, pp. 65-80, 1996. [50] H. C. Huang, C. C. Tsai, “Simultaneous tracking and stabilization of an omnidirectional mobile robot in polar coordinates: a unified control approach,” Robotica, vol. 27, pp. 447-458, 2009. [51] R. Siegwart, I. R. Nourbakhsh, Introduction to autonomous mobile robots, 1st Ed., Bradford, 2004. [52] C. C. Tsai, H. C. Huang, S. C. Lin, “Adaptive neural network control of a self-balancing two-wheeled scooter,” IEEE Transactions on Industrial Electronics, vol. 57, no 4, pp. 1420-1428, 2010. [53] D. Gu, H. Hu, “A model predictive controller for robot to follow a virtual leader,” Robotica, vol. 27, pp. 905-913, 2009. [54] A. Shimada, N. Hatakeyama, “High-speed motion control of wheeled inverted pendulum robots,” in Proc. of 4th IEEE International Conference on Mechatronics, 2007, pp. 1-6. [55] D. W. C. Ho, P. A. Zhang and J. Xu, “Fuzzy wavelet networks for function learning,” IEEE Transactions on Fuzzy Systems, vol. 9, no.1, pp. 200-211, 2001. [56] C. C. Tsai, H. L. Wu, “Nonsingular terminal sliding control using fuzzy wavelet networks for mecanum wheeled omni-directional vehicles,” in Proc. of IEEE International Conference on Fuzzy System, Barcelona, Spain, 2010, pp. 2388-2393. [57] C. K. Lin, “Nonsingular terminal sliding mode control of robot manipulators using fuzzy wavelet networks,” IEEE Transactions on Fuzzy Systems, vol. 14, no. 6, pp. 849-859, 2006. [58] C. H. Lu, “Design and application of stable predictive controller using recurrent wavelet neural networks,” IEEE Transactions on Industrial Electronics, vol. 56, no 9, pp. 3733-3742, 2009.
摘要: 
本論文的目的在於研究非完整拘束型行動機器人之三種智慧適應同時軌跡追蹤與點對點控制。首先藉由非完整拘束型行動機器人之運動學與動力學數學模型,應用適應倒逆步及李亞普諾夫穩定原理,建構運動學與動力學之適應性同時軌跡追蹤與點對點控制器。另利用去氧核醣核酸遺傳演算法以積分平方誤差去搜尋該運動學控制器最佳的參數值,使行動機器人可達到此一功能。其次,針對機器人質量中心與其兩驅動輪中心不同點之非完整拘束型行動機器人,用同樣方法分別推導出運動學控制器與動力學之適應性控制器,用以達到同時軌跡追蹤與點對點控制之目的。最後,為解決兩輪自平衡行動機器人之同時軌跡追蹤與點對點控制,本文首先提出倒逆步順滑模態控制法則,使用李亞普諾夫穩定原理,推導出的控制器確實可達成兩輪自平衡之同時軌跡追蹤與點對點控制;爾後,為解決兩輪自平衡行動機器人之內部參數變動,繼續提出模糊小波網路理論並藉由倒逆步順滑模態及李亞普諾夫穩定原理推導出智慧適應控制器,用以達成同時軌跡追蹤與點對點控制之目的。電腦模擬結果顯示本文所提出之三種智慧型控制器,在軌跡追蹤與穩定控制都展現良好的控制性能。

The dissertation presents three intelligent adaptive control methodologies for simultaneous tracking and stabilization (STS) of nonholonomic wheeled mobile robots. First, via the well-known kinematic and dynamic models of nonholonomic mobile robots with differential driving mechanisms, a kinematic controller is proposed to achieve STS and then an adaptive dynamic controller based on the designed kinematic controller is constructed by Lyapunov stability theory and backstepping. A deoxyribonucleic-acid (DNA) computing algorithm is used to searching for the best parameters in the sense of minimum of integrated square error (ISE) or control effort. Second, one more complicated kinematic and dynamic controller is also synthesized by Lyapunov stability theory and backstepping for nonholonomic mobile robots whose center of gravity does not coincide with the center of the two driving wheels; the three optimal parameters of the aforementioned kinematic controller are searched by using the DNA computing algorithm. Third, both backstepping and aggregated hierarchical sliding-mode control are first emploed to solve for the same STS problem for a self-balancing two-wheeled mobile robot, and then an intelligent adaptive motion controller using fuzzy wavelet network (FWN) is applied to achieve STS for the mobile robot with parameter variations, model uncertainties and unknown frictions; FWN-based adaptive motion control laws is derived using the Lyapunov stability theory. Several computer simulation results indicate that the three proposed controllers are capable of providing satisfactory performance for simultaneous tracking and stabilization of two types of nonholonomic wheeled mobile robots.
URI: http://hdl.handle.net/11455/7071
其他識別: U0005-2507201115045600
Appears in Collections:電機工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.