Please use this identifier to cite or link to this item:
標題: 雙頻段壓控震盪器及高效能變壓器之研究
Study on Dual-Band Voltage Control Oscillator and High Performance Transformers
作者: 簡宏吉
Chien, Hung-Chi
關鍵字: Voltage Control Oscillator;壓控震盪器;Transformers;變壓器
出版社: 電機工程學系所
引用: [1]C. Patrick Yue, S. Simon Wong, ”Physical modeling of spiral inductors on silicon”, IEEE trans. Electron Device, vol. 47,Mar.2000. [2]H. Jiang, Y. Wang, J. A. Yeh, N. C. Tien, “Fabrication of High-performance On-chip Suspended Spiral Inductors by Micromachining and Electroless Copper Plating” IEEE MTT-S, June 2000. [3]C. Patrick Yue, S. Simon Wong, ”On-chip spiral inductors with patterned ground shields for si-based RF IC’s”, IEEE J. Solid-State Circuits, vol. 33, May 1998. [4]Chih-Chun Tang, Chia-Hsin Wu, Shen-Iuan Liu, ” Miniature 3-D inductors in standard CMOS process” IEEE Journal of Solid-State Circuits, vol 37, April 2002 . [5]Chih-Chun Tang, Chia-Hsin Wu,Sben-Iuan Liu”Miniature 3-D Inductors in Standard CMOS Process,”.IEEE JSSC vo1.37.NO.4. Anril 2002 pp.471-480 [6]Zolfaghari, A.; Chan, A.; Razavi, B.,” Stacked inductors and transformers in CMOS technology”, IEEE J. Solid-State Circuits, vol 36, April 2001. [7]Heng-Ming Hsu, Ming-Ming Hsieh, and Chien-Wen Tseng, “High Coupling Transformer in CMOS Technology”, IEEE RFICs. 2006. [8]S. Yoshitomi, “Analysis and simulation of spiral inductor fabricated on silicon”, IEEE Electronics, Circuits and Systems, 2004. [9]John R.Long, “Monolithic Transformers for Silicon RF IC Design,” IEEE Journal of Solid-State Circuits, vol 35,No9, September 2000 . [10]A. Italia, F. Carrara, E. Ragonese, T. Biondi, A. Scuderi, G. Palmisano, “The transformer characteristic resistance and its application to the performance analysis of silicon integrated transformers”,IEEE Radio Frequency integrated Circuits, 2005. [11]Nathan Sneed, “A 2-GHz CMOS LC-tuned VCO using switched-capacitors to compensate for Bondwire inductance variation,” Master Thesis, University of California, Berkeley, Dec, 2000. [12]KaChun Kwok and Howard C. Luong, Senior Member, IEEE “Ultra-Low-Voltage High-Performance CMOS VCOs Using Transformer Feedback ”, IEEE Journal of Solid-State Circuits, vol. 40, no. 3, March 2005 [13]F. Herzel, H. Erzgraber, and N. Ilkov, “A new approach to fully integrated CMOS LC-oscillators with a very large tuning range,” IEEE Custom Integrated Circuits Conference, pp. 573-576, 2000. [14]A.Kral, F. Behbahani, and A. A. Abidi, “RF-CMOS oscillators with switched tuning,” IEEE Custom Integrated Circuits Conference, pp.555-558, 1998. [15]P. Andreani, A. Bonfanti, L. Romano, and C. Samori, “Analysis and design of a 1.8-GHz CMOS LC quadrature VCO,” IEEE J. Solid-State Circuits, vol. 37, pp.1737-1747, Dec. 2002. [16]E. Hegazi, H. Sjoland, and A.A. Abidi, “A filtering technique to lower LC oscillator phase noise,” IEEE J. Solid-State Circuits, vol.36, no.12, pp.1921–1930, Dec. 2001. [17] S. L. J. Gierkink, S. Levantino, R. C. Frye, C. Samori and V. Boccuzzi, “A low-phase-noise 5-GHz CMOS quadrature VCO using superharmonic coupling,” IEEE J. Solid-State Circuits, vol. 38, pp.1148-1154, July 2003. [18] N. H. W. Fong, J. Plouchart, N. Zamdmer, D. Liu and L. F. Wagner, C. Plett, and N. G. Tarr, “A 1-V 3.8-5.7-GHz wide-band VCO with differentially tuned accumulation MOS varactors for common-mode noise rejection in CMOS SOI technology,” IEEE Trans. Microwave Theory and Tech., vol. 51, pp.1952-1959, Aug. 2003. [19] Johan van der Tang, Pepijn van de Ven, Dieter Kasperkovitz, and Arthur van Roermund, “Analysis and Design of an Optimally Coupled 5-GHz Quadrature LC Oscillator,” IEEE Journal of Solid-State Circuits, vol. 37, no. 5, pp. 657-661, May, 2002. [20] M.Tiebout, ”Low-power low-phase-noise differentially tuned quadrature VCO design in standard CMOS,” IEEE J.Solid-State Circuits,vol.36, No.7, pp.1018-1024, July 2001. [21] S. M. Yim, K. K. O, “Demonstration of a switched resonator concept in a dual-band monolithic CMOS LC-tuned VCO,” in Proc. Custom Integrated Circuits Conference (CICC),pp. 205-208, 2001. [22] S. L. J. Gierkink, S. Levantino, R. C. Frye, C. Samori and V. Boccuzzi, “A low-phase-noise 5-GHz CMOS quadrature VCO using superharmonic coupling,” IEEE J. Solid-State Circuits, vol. 38, pp.1148-1154, July 2003. [23] Aeok-Ju Yun; So-Bong Shin; Hyung-Chul Choi; Sang-Gug Lee; “A 1mW current-reuse CMOS differential LC-VCO with low phase noise,” Solid-State Circuits Conference, 2005. Digest of Technical Papers. ISSCC. 2005 IEEE International 6-10 Feb. 2005 Page(s):540 - 616 Vol. 1 [24] C.P. Yue, S. S. Wong, “On-chip spiral inductors with patterned ground shields for Si-based RF ICs”, Vol. 33, May 1998. [25] P. van de Ven et al., “An optimally coupled 5-GHz quadrature LC oscillator,” in Symp. VLSI Circuits, 2001, pp. 115–118. [26] Jae-Hong Chang and Choong-Ki Kim, “symmetrical 6-GHz fully integrated cascode coupling CMOS LC quadrature VCO,” IEEE Microwave and Wireless Components Letters, VOL. 15, NO. 10, October 2005. [27] Kwok, K.; Luong, H.C.;”Ultra-low-Voltage high-performance CMOS VCOs using transformer feedback” IEEE Journal of Solid-State Circuits,Volume 40, Issue 3, Mar 2005 Page(s): [28] B. Razavi, “RF Microelectronics,”2003 [29] B.Razavi,“Designof Integrated Circuits for Optical Communications,”2002. [30] D. J. Cassan, J. R. Long, “A 1-V transformer-feedback low-noise amplifier for 5-GHz wireless LAN in 0.18-um CMOS”, IEEE Solid-State Circuits, March 2003. [31] M.P. van der Heijden, L.C.N. de Vreede, J.N. Burghartz, “On the design of unilateral dual-loop feedback low-noise amplifiers with simultaneous noise, impedance, and IIP3 match”, IEEE Solid-State Circuits, Oct. 2004. [32] W. Simburger, H. D. Wohlmuth, P. Weger, “A monolithic 3.7 W silicon power amplifier with 59% PAE at 0.9 GHz”, IEEE Solid-State Circuits Conference, 1999. [33] H.M. Greenhouse, “Design of Planar Rectangle Microelectronic Inductors”, IEEE Trans. Parts, Hybrids, Packag., vol. 10. pp.101-109, June 1974. [34] [35] [36] 台灣大學沈致賢, “壓控振盪器之設計與實作,” 2003. [37] 復旦大學唐長文, ”電感電容壓控振盪器,“ 2004. [38] 大同大學陳建樺, “雙頻段2.4/5.2Ghz壓控振盪器設計,” 2003.
本論文最主要的目的在於製作及探討被動元件與電壓控制震盪器,首先製作高效能變壓器分析變壓器之Q值與自振頻率並且由變壓器轉換特性阻抗探討變壓器效能,其次介紹3D變壓器之結構以及閘數比之定義,並設計不同閘數比之3D變壓器,藉由使用多層金屬層繞線達到高耦合係數及不同閘數比,並分析閘數比與耦合係數,第三設計開關切換感值之電感,利用切換電感線圈達到切換電感值之效果,由直流與高頻兩方面分析元件特性,直流時討論切換線圈時電阻值的變化,在高頻方面以等效電路解釋元件行為,最後利用開關切換感值之電感元件應用在電壓控制震盪器中,電路的設計、模擬、量測等,文中有詳述。文中元件部份使用Foundry 0.13um RFCMOS 製程,電路使用TSMC 0.18 um RFCMOS標準製程來實現。
元件量測方式主要使用on wafer量測,在接上BIAS-T到網路分析儀量測。探討量测與模擬的差異,並且製作等效電路加以分析。電路量測方式主要是on board量測,在接上BIAS-T到頻譜分析儀量測。探討量測與模擬的差異,並找出原因以為將來可以製作出效能更佳之電路。

Implementation of passive devices and Voltage Control Oscillator (VCO) are addressed in this thesis. Firstly, the transformer performance including power transform, self-resonance frequency, quality factor, coupling factor and transformer efficiency are studied comprehensively. The planar and stack structures of on-chip transformers are compared in the thesis. Secondly, the 3-dimension transformers with different turns-ratio are designed to improve the coupling factor coefficient. Thirdly, using switch coil numbers of inductor to transform the different inductances. The metal resistance and high frequency characteristics are investigated in the work. The equivalent circuit model of all passive devices are proposed to explain the behavior of the measurement results. Finally, the VCO adopting switched inductor can achieve the dual band 2.4/5.2GHz oscillation operation is implemented by using the TSMC 0.18 um CMOS technology. Moreover, the Foundry 0.13um RFCMOS process is adopted to implement the passive devices.
Passive devices are measured on wafer and VCO is measured on board.
其他識別: U0005-0208200710254800
Appears in Collections:電機工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.