Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/7248
標題: 創新薄膜太陽電池之模擬研究
Simulation Study of Novel Thin Film Solar Cells
作者: 湯銘
Tang, Ming
關鍵字: Thin film solar cells;矽基薄膜太陽能電池;a-Si;Density Of State;AM 1.5;TMM;非晶矽;能態密度;AM 1.5;傳播矩陣法
出版社: 電機工程學系所
引用: Reference [1] D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power”, J. Appl. Phys., 25,676 (1954) [2] D. C. Raynolds, G. Leies, L. L. Antes, and R. E. Marburger, “Photovoltaic Effect in Cadmium Sulfide,” Phys. Rev., 96,533 (1954) [3] Chiba, Y. Islam, A. Kakutani, K. Komiya, R. Koide, N. Han, L.” High Efficiency of Dye- Sensitized Solar Cells”, 15th International Photovoltaic Science and Engineering Conference (PVSEC-15), Shanghai, China, 2005. [4] D. Staebler and C. Wronski, “Reversible photo-conductivity in amorphous Si”, Appl. Phys. Lett., 31, 292 (1977) [5] G. Yue, B. Yan, G. Ganguly, J. Yang and S. Guha, “Material structure and metastability of hdyrogenated nanocrystalline Si soalr cells”, Appl. Phys. Lett., 88, pp. 263-507, 2006. [6] J. K. Rath, “Nanocystalline silicon solar cells “, Appl. Phys. A: Mater. Sci. Process., 96, pp. 145-152, 2009. [7] H. Keppner, J. Meier, P. Torres, D. Fischer and A. Shah, “Microcrystalline silicon and micromorph tandem solar cells“, Appl. Phys. A: Mater. Sci. Process., 69, pp. 169-177, 1999. [8] M. A. Green and S. R. Wenham, "NOVEL PARALLEL MULTIJUNCTION SOLAR-CELL", Applied Physics Letters, 65, pp. 2907-2909, Dec 1994. [9] B. M. Kayes, H. A. Atwater, and N. S. Lewis, "Comparison of the Device Physics Principles of Planar and Radial P-N Junction Nanorod Solar Cells", J. Appl. Phys., 97, pp. 114302-11, 2005. [10] J. Li, H. Yu, S. M. Wong, G. Zhang, G. Q. Lo and D.-L. Kwong, "Surface nanostructure optimization for solar energy harvesting in Si thin film based solar cells", IEDM Tech. Dig, pp. 547-550, Sep. 2009. [11] CB Honsberg, AM Barnett, D Kirkpatrick, "Nanostructured Solar Cells For High Efficiency Photovoltaics", Photovoltaic Energy Conversion, IEEE 4th World Conference, May 2006, Hawaii, U.S.A [12] B Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C.M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources“, Nature 449, 885, 2007. [13] E. C. Garnett and P. D. Yang, ”Silicon nanowire radial p-n junction solar cells“, J. Am. Chem. Soc. 130, 9224, 2008. [14] Y. M. Song, J. S. Yu, and Y. T. Lee, “Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement“, Opt. Lett. 35, 276, 2010. [15] V. Sivakov, G. Andra, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass:synthesis optical properties, and cell parameters“, Nano Lett. 9, 1549, 2009. [16] S.M. Sze, Physics of Semiconductor Devices, Wiley, 1981. [17] Swartz, G. A., “Computer model of amorphous silicon solar cell”, J. Appl. Phys., vol.53, pp.712-719, 1982. [18] I., and S. Lee, “On the current-voltage characteristics of amorphous hydrogenated silicon Schottky diodes”, J. Appl. Phys., vol.53, pp.1045-1051, 1982. [19] Hack, M. and M. Shur, “Physics of amorphous silicon alloy p-i-n solar cells”, J. Appl. Phys., vol.58, pp.997-1020, 1985. [20] Ikegaki, T., H. Itoh, S. Muramatsu, S. Matsubara, N. Nakamura, T. Shimada, J. Umeda, and M. Migitaka, “Numerical analysis of amorphous silicon solar cells: A detail investigation of the effects of internal field distribution on characteristics”, J. Appl. Phys., vol.58, pp.2352-2359, 1985. [21] Cohen, M.H., H. Fritsche, and S. R. Ovshinsky, “Simple band model for amorphous semiconducting alloys”, Phys. Rev. Lett., vol.22, pp.1065-1068, 1969. [22] Winer, K., “Defect formation in a-Si:H”, Phys. Rev. B, vol.41, pp.12150, 1990. [23] Stuzmann, M., Phil. Mag. Vol.56,pp.63, 1987. [24] Synopsys TCAD tools: Sprocess and Sdevice user's manuals; 2006. [25] K. Rajkanan, R. Singh, and J. Shewchun, “Absorption Coefficient of Silicon for Solar Cell Calculations,” Solid-State Electronics, vol. 22, no. 9, pp. 793-795, 1979. [26] A. Liegmann, “The Application of Supernodal Techniques on the Solution of Structurally Symmetric Systems,” Technical Report 92/5, Integrated Systems Laboratory ETH, Zurich, Switzerland, 1992. [27] T.-W. Tang, “Extension of the Scharfetter-Gummel Algorithm to the Energy Balance Equation,”IEEE Transactions on Electron Devices, vol. ED-31, no. 12, pp. 1912-1914, 1984. [28] R. E. I. Schropp and M. Zeman, "Amorphous and microcrystalline silicon solar cells, Modeling, Materials and Device Technology", Kluwer Academic Publishers, 1998. [29] Sahoo, K.C. Yiming Li Men-Ku Lin Chang, E.Y. Jin-Hua Huang, “Design and fabrication of sub-wavelength structure on silicon nitride for solar cells”, Nanotechnology, IEEE-NANO 2009. 9th IEEE Conference Publication [30] Pattnaik, S. Biswas, R. Dalal, V.L. Slafer, D. Jin Ji, “AMORPHOUS SILICON SOLAR CELLS ON PLASTIC BASED PHOTONIC STRUCTURES”, Photovoltaic Specialists Conference (PVSC), 2010 35th IEEE [31] Schade, H. and Z.E. Smith, “Mie scattering and rough interface”, Appl. Optics., vol.24, pp.3221-3226, 1985. [32] Yablonovitch, E. and G.D. Cody, “Intensity enhancement in textured optical sheets for solar cells”, IEEE Trans. Electron Dev., vol.29, pp.300-305, 1982. [33] N.L. Dmitruk, A.V. Korovin, O.Yu. Borkovskaya, I.B. Mamontova, I.E. Maronchuk,” OPTICAL ABSORPTION ENHANCEMENT IN NANOMICRO TEXTURED THIN FILM SOLAR CELLS”, 3rd World Conference on Phofovoliaic Energy Conversion, Osokn, Japan, 2003. [34] Jung-Yen Yang, Chien-Wei Liu, Chin-Lung Cheng, Jin-Tsong Jeng, Bau-Tong Dai, Jian-Shian Lin, and Kun-Cheng Chen, “Photovoltaic Characterizations of Crisscrossed-Silicon-Nanorod Solar Cells”, IEEE Electron Dev. Lett., vol.30, pp.1299-1301, 2009. [35] M. Zeman, J. Krc, ”Nano-structures for light management in optoelectronic devices”, Advanced Semiconductor Devices and Microsystems, ASDAM ''06. International Conference, 2006. [36] J.Y. Jung, Z. Guo, S.W. Jee, H.D. Um, K.T. Park, J.H. Lee, ”Optically improved solar cell using tapered silicon nanowires”, Nanotechnology (IEEE-NANO), 10th IEEE Conference on, 2010. [37] X. Wang, K. L. Pey, C. H. Yip, E. A. Fitzgerald, and D. A. Antoniadis, “Vertically arrayed Si nanowire/nanorod-based core-shell p-n junction solar cells”, J. Appl. Phys., vol.108, 124303, 2010. [38] M. D. Kelzenberg, M. C. Putnam, D. B. Turner-Evans, N. S. Lewis, H. A. Atwater, “PREDICTED EFFICIENCY OF SI WIRE ARRAY SOLAR CELLS”, Photovoltaic Specialists Conference (PVSC), 2009 34th IEEE [39] M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, H. A. Atwater, “SINGLE-NANOWIRE SI SOLAR CELLS”, Photovoltaic Specialists Conference (PVSC), 2008 33th IEEE [40] R. E. I. Schropp and M. Zeman, "Amorphous and microcrystalline silicon solar cells, Modeling, Materials and Device Technology", Kluwer Academic Publishers, 1998. [41] Kayes BM, Atwater HA, Lewis NS, Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells, J. Appl. Phys. 2005;97: 114302-11. [42] Tian B, Zheng X, Kempa TJ, Fang Y, Yu N, Yu G, J. Huang, and Lieber CM, Coaxial silicon nanowires as solar cells and nanoelectronic power sources, Nature 2007;449: 885-890. [43] Tsakalakos L, Balch J, Fronheiser J, Korevaar BA, Sulima O, and Rand J, Silicon nanowire solar cells, Appl. Phys. Lett. 2007;. 91: 233117. [44] Kelzenberg MD, Turner-Evans DB, Kayes BM, Filler MA, Putnam MC, Lewis NS, and Atwater HA, Photovoltaic Measurements in Single-Nanowire Silicon Solar cells, Nano Lett. 2008; 8: 710-714. [45] Stlzner T, Pietsch M, Andra G, Falk F, Ose E, and Christiansen S, Silicon nanowire-based solar cells, Nanotechnology 2008; 19:295203. [46] Manual for Sentaurus Device from Synopsys Inc. [47] Gray JL, A computer model for the simulation of thin-film silicon-hydrogen alloy solar cells, IEEE 1989 [48] Yamanaka S, Konagai S, Takahashi K, Numerical Study of Amorphous Silicon Based Solar Cell Performance Toward 15% Conversion Efficiency, Jpn. J. Appl. Phys. 1989;28:1178. [49] J. Krc, A. Campa, F. Smole, M. Topic, J.L. Gray, Advanced optical design of tandem micromorph silicon solar cells. J. Non-Crystalline Solids 352 (2006) 1892. [50] B.M. Kayes, H. A. Atwater, N.S. Lewis, Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J. Appl. Phys., 97 (2005) 114302 [51] Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. Chueh, P. Leu, J. Ho, T. Takahashi, L. Reichertz, S. Neale, K. Yu, M. Wu, J. Ager, Ali Javey, Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nature Materials, 8 (2009) 648. [52] B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449 (2007)885. [53] L. Tsakalakos, J. Balch, J. Fronheiser, B.A. Korevaar, O. Sulima, J. Rand, Silicon nanowire solar cells. Appl. Phys. Lett. 91 (2007) 233117. [54] M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, H. A. Atwater, Photovoltaic Measurements in Single-Nanowire Silicon Solar cells. Nano Lett., 8 (2008) 710. [55] Z. Pei, S. T. Chang, C. W. Liu, Y.C. Chen, Numerical Simulation on the Photovoltaic Behavior of an Amorphous Silicon Nanowire Array Solar Cell. IEEE Electron Device Letters. 30, (2009) 1305. [56] M. Zeman, J. A. Willemen, L. L. A. Vosteen, G. Tao and J. W. Metselaar. Sol. Energy Mater. Sol. Cells 46 (1997) 81. [57] J. L. Gray, A computer model for the simulation of thin-film silicon-hydrogen alloy solar cells. IEEE Trans. Electron. Devices 36 (1989) 906. [58] S. Yamanaka, S. Konagai, K. Takahashi, Numerical Study of Amorphous Silicon Based Solar Cell Performance Toward 15% Conversion Efficiency. Jpn. J. Appl. Phys. 28 (1989) 1178. [59] H. Tasaki, W.Y. Kim, M. Hallerdt, M. Konagai, K. Takahashi, Computer simulation model of the effects of interface stated on high-performance amorphous silicon solar cell. J. Applied Phys. 63 (1988) 550. [60] R.E.I. Schropp, M. Zeman, Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Material and Device Technology. Kluwer Academic Publishers (1998). [61] T. Hayaski, Y. Hazama, S. Miyazaki, M. Hirose, Band offset in boron-doped amorphous silicon heterostructures. Jpn. J. Appl. Phys. 27 (1988) L986. [62] G.P.Wei, K. Dusit, E. Toshihito, O. Hiroaki, Yoshihiro H, Measurement of the energy band discontinuities in a-SiC p-i-n junctions by internal photoemission. J. Non-cryst. Solids 114 (1989) 735. [63] J. Y. Hou, J. K. Arch, S. J. Fonash, Computer modeling of a-SiC:H/a-Si:H heterojunction solar cell performance as a function of the apportionment of the bandgap discontinuity. IEEE Photovoltaic Specialists Conference, 2 (1990)1535. [64] R. E. I. Schropp and M. Zeman, "Amorphous and microcrystalline silicon solar cells, Modeling, Materials and Device Technology", Kluwer Academic Publishers, 1998. [65] M. Levinshtein, S. Rumyantsev, M. Shur, “Semiconductor Parameters”, Word Scientific Publishing, 1996.
摘要: 
矽基薄膜太陽能電池因為材料成本不斷下降和效率不斷提升之下,製造成本可達每瓦0.7美元以下,成為目前最有潛力的太陽能電池。在本篇論文之中,我們首先探討太陽能電池的基本運作原理,並對於太陽能電池基本的電氣特性做一介紹。 接著對於目前矽基薄膜太陽能電池之優缺點進行探討,接著我們將提出一個新的解決方案和太陽能電池結構。
新的太陽能電池結構是將光吸收和載子傳播分離,進而提升其效率。此構想將利用TCAD來驗證其可行性。為了建立適當的模型,首先需探討矽基太陽能材料的特性和模型參數,如利用能態密度(Density Of State)來描述非晶矽(矽化碳)的能帶,產生複合(GR)模型等來校正和模擬元件電氣特性。利用AM1.5的太陽能光譜和傳播矩陣法(TWM)來模擬新太陽能電池結構的光場分布。最後我們利用建立起來的模型來模擬傳統和新式結構的差異比較。並發現新結構下的有較好的效率。我們改變了元件尺度來探討效率的變化,這些變化驗證的我們當初的想法並提供製作的方向。

Due to the material cost dropping and the efficiency improving, the manufacturing cost can be reduced under US$ 0.7/W. Thin film solar cells become the most potential photovoltaic cells. In this dissertation, the basic theorem and the electrical character of photovoltaic are first introduced; and, the advantage/disadvantage and the limitation of traditional thin film solar cells are discussed. For the solutions, novel thin film solar cells are then provided.
The main idea of novel solar cells is based on the dividing methods of photon absorption and carrier transport to improve the photo voltaic efficiency. TCAD, a popular tool for device simulations, is used to verify the idea. Before the simulation, the material character and the model parameters of the silicon-based solar cells, such as density of state for the a-Si(a-SiC) band structure, generation and recombination model and so on, are first studied to calibrate and simulate the device electrical behavior. The AM 1.5 solar radiation and transfer matrix (TMM) are further used to simulate the optical field in the novel cells. Finally, these models are used to simulate, to compare the traditional cells with the novel cells, and to find the efficiency improvement of the novel cells. The different cells dimensions are also used to see the change of the efficiency. The results can prove the thinking for this study and provide the consultation for the future work.
URI: http://hdl.handle.net/11455/7248
其他識別: U0005-2907201112042000
Appears in Collections:電機工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.