Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/7255
標題: 可變金屬寬度變壓器之設計
Design of On-Chip Transformer With Various Metal Widths
作者: 曾建文
Tseng, Chien-Wen
關鍵字: Transformer;變壓器;Various Metal Widths;可變寬度
出版社: 電機工程學系所
引用: [1] Cassan, D.J.; Long, J.R.; “A 1-V transformer-feedback low-noise amplifier for 5-GHz wireless LAN in 0.18-/spl mu/m CMOS” IEEE Journal of Solid-State Circuits, Volume 38, Issue 3, March 2003 Page(s):427 – 435 [2] W. Simburger, H. D. Wohlmuth, P. Weger, “A monolithic 3.7 W silicon power amplifier with 59% PAE at 0.9 GHz”, IEEE Solid-State Circuits Conference, 1999. [3] Jianjun J. Zhou, Member, IEEE, and David J. Allstot;” Monolithic Transformers and Their Application in a Differential CMOS RF Low-Noise Amplifier” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 33, NO. 12, DECEMBER 1998 Page(s):2020 - 2027 [4] Ping Wing Lai, Stephen I. Long;” A 5GHz CMOS Low Phase Noise Transformer Power Combining VCO” 2006 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 11-13 June 2006 Page(s):4 pp. [5] Donghyun Baek; Taeksang Song; Euisik Yoon; Songcheol Hong;” 8-GHz CMOS quadrature VCO using transformer-based LC tank” IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 13, NO. 10, OCTOBER 2003 Page(s):446 – 448 [6] H.M. Greenhouse, “Design of Planar Rectangle Microelectronic Inductors”, IEEE Trans. Parts, Hybrids, Packag., vol. 10. pp.101-109, June 1974. [7] F.W. Gupta, Inductance Calculations, Dover Publication Inc, New York, 1946. [8] MATLAB User''s Guide (http://www.mathworks.com/index.html) [9] John R. Long, “Monolithic Transformers for Silicon RF IC Design”, IEEE Journal of Solid-State Circuits, Vol. 35, Sep. 2000. [10] M. Danesh, J. R. Long, “Differentially Driven Symmetric Microstrip Inductors”, IEEE, Microwave Theory and Techniques, Jan 2002. [11] Lopez-Villegas, J.M.; Samitier, J.; Cane, C.; Losantos, P.; Bausells, J.;” Improvement of the quality factor of RF integrated inductors by layout optimization” IEEE Transactions on Microwave Theory and Techniques, Jan. 2000 Page(s):76 – 83 [12] E. Frlan, S. Meszaros, M. Cuhaci, J.Wight, “Computer-aided design of square spiral transformers and inductors”, IEEE MTT-S, June 1989. [13] Accept of IEEE. [14] Agilent Technical support. (http://www.agilent.com) [15] A. Italia, F. Carrara, E. Ragonese, T. Biondi, A. Scuderi, G. Palmisano, “The transformer characteristic resistance and its application to the performance analysis of silicon integrated transformers”, IEEE Radio Frequency integrated Circuits, 2005. [16] Ichiro Aoki, Student Member, IEEE, Scott D. Kee, David B. Rutledge, Fellow, IEEE, and Ali Hajimiri,” Distributed Active Transformer—A New Power-Combining and Impedance-Transformation Technique” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 50, NO. 1, JANUARY 2002 Page(s):316 – 331 [17]Heng-Ming Hsu; Ming-Ming Hsieh; Chien-Wen Tseng; Kuo-Hsun Huang.;” High coupling transformer in CMOS technology” 2006 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 11-13 June Page(s):4 pp. [18] D. M. Pozar, Microwave Engineering-3rd ed, Wiley, New York, 2005. [19] Bevilacqua, A.; Niknejad, A.M.;” An ultra-wideband CMOS LNA for 3.1 to 10.6 GHz wireless receivers” ISSCC. 2004 IEEE International Solid-State Circuits Conference, 2004. Digest of Technical Papers. 15-19 Feb. 2004 Page(s):382 - 533 Vol.1 [20] Chang-Wan Kim, Min-Suk Kang, Phan Tuan Anh, Hoon-Tae Kim, and Sang-Gug Lee;” An Ultra-Wideband CMOS Low Noise Amplifier for 3–5-GHz UWB System” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 40, NO. 2, FEBRUARY 2005Page(s):544 – 547 [21] Kurachi, S.; Yoshimasu, T.; Itoh, N.; Yonemura, K.;” 5-GHz Band Highly Linear VCO IC with a Novel Resonant Circuit” 2007 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 10-12 Jan. 2007 Page(s):285 - 288 [22] Do, M.A.; Zhao, R.Y.; Yeo, K.S.; Ma, J.G.;” New wideband/dualband CMOS LC voltage-controlled oscillator” IEE Proceedings-Circuits, Devices and Systems, Oct. 2003 Page(s):453-9 [23] K. Shibata, K. Hatori, Y. Tokumitsu, and H. Komizo, “Microstrip Spiral Directional Coupler”, IEEE Trans. Microwave Theory Tech., vol. 29, July 1981. [24] M. W. Geen, G. J. Green, R. G. Arnold, J. A. Jenkins, and R. H. Jansen,“Miniature multilayer spiral inductors for GaAs MMICs,” in Proc. GaAs IC Symp., Oct. 1989, pp. 303–306. [25] Agilent control software. (http://www.agilent.com) [26] P. van Wijnen, H. Claessen, and E. Wolsheimer, “A new straighforward calibration and correction procedure for on-wafer high-frequency S-parameter measurements (45MHz - 18GHz)”, Proc. IEEE BCTM, 1987. [27] M. Koolen, J. Geelen, and M. Versleijen, “An improved de-embedding technique for on-wafer high frequency characterization”, Proc. IEEE BCTM, pp. 188-191, 1991. [28] H. Cho, D. E. Burk, “A three-step method for the de-embedding of high-frequency S-parameter measurements,” IEEE Trans. Electron Devices, vol. 38, no. 6, pp. 1371–1375, Jun. 1991. [29] T. E. Kolding, “A four-step method for de-embedding gigahertz on-wafer CMOS measurements,” IEEE Trans. Electron Devices, vol. 47, no. 4, pp. 734–740, Apr. 2000. [30] Agilent control software IC-CAP2004. (http://www.agilent.com) [31] A. L. Niknejad, R. G. Meyer, “Analysis, design, Simulation and Application of Inductors and Transformers for Si RF ICs,” Kluwer Academic Publishers, 2003. [32] C.P. Yue, S. S. Wong, “On-chip spiral inductors with patterned ground shields for Si-based RF ICs”, Vol. 33, May 1998. [33] Heng-Ming Hsu;” Analytical Formula for Inductance of Metal of Various Widths in Spiral Inductors” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 51, NO. 8, AUGUST 2004 Page(s):1343 - 1346 [34] C. Liao, T. H. Huang, C. Y. Lee, D. Tang, S. M. Lan, T. N. Yang, L. F. Lin, “Method of creating local semi-insulating regions on silicon wafers for device isolation and realization of high-Q inductors”, IEEE Electron Device Letters, Vol. 19, Dec. 1998. [35] David K. Cheng,李永勳 譯 電磁學-2nd ed, 台灣培生教育,2002年8月. [36] Huang, X.; Ngo, K.D.T.;” Design technique for a spiral planar winding with geometric radii” IEEE Transactions on Aerospace and Electronic Systems, April 1996 Page(s):825 – 830 [37] Craninckx, J., Steyaert, M.S.J., “A 1.8-GHz low-phase-noise CMOS VCO Using Optimized Hollow Spiral Inductors”, Solid-State Circuits, IEEE Journal of Volume: 32, May 1997, pp. 736 -744
摘要: 
本文是針對矽基板變壓器探討其品質因數的改善,首先以兩種寬度不同的固定金屬寬度之對稱型變壓器架構,分析其金屬寬度的變化,對變壓器的特性有何影響。並根據此實驗,提出兩種可變金屬寬度的架構,首先是雙環面可變金屬寬度變壓器與固定金屬寬度變壓器在同感值、同線距下的實驗,比較其品質因數、直流阻值的改善率並分析Square Number的分布情形,也利用設計理論的最小直流阻值計算公式配合直流阻值計算公式去計算驗證量測值的正確性。接著,根據雙環面設計法所探討的實驗結果,進而再提出可改善其缺點的設計法,本文將此設計法命為”超環面可變金屬寬度的設計”,主要是有別於雙環面的設計與改善,同樣地,也為了比較其直流阻值改善率,因此在同感值、同線距下跟固定金屬寬度變壓器的實驗,比較品質因數、直流阻值的改善率並分析Square Number的分布。而為了更仔細比較兩種可變金屬寬度的設計法的改善率優劣,因此特別在同面積、同線距、同感值下,讓金屬寬度的影響更佳能夠顯示出來的架構下,比較兩者經量測而得的品質因數、直流阻值的改善率並分析Square Number的分布情形。

In order to discuss the metal width effect, the layouts are designed to maintain identical self and mutual inductances in transformer's coils. Two devices with different coil widths are adopted. Measurement results show wide metal device has low loss and higher quality with the paid of large chip area and low self-resonance frequency. However the metal widith can't infinite augment.
Accordingly this thesis proposed the two kinds of the various metal width transformers.
One kind of design is called "The pair of planar variable width" as the name; it proposed two ratios that outer to inner for design each turn of width. This layout design of variable width transformer is proposed to minimize the metal resistance in this thesis. The proposed algorithm can rapidly design metal widths in each coil of planar transformer for a given chip area. Compare with the constant width design the self-inductance and metal space are keep the identical. According to the experiment result, “The pair of planar variable width design” is has better quality and low metal resistance. However according metal resistance in each transformer's coil, “the pair of planar variable width” can be improvement by the next proposed design.
"The ultra-planar variable width design" is proposed to improve "The pair of planar variable width design". Compare with the constant width design the self-inductance and metal space are keeping identical. According to the experiment result, “The ultra-planar variable width design” is has better quality and low metal resistance.
In order to compare "The ultra planar variable width design" with "The pair of planar variable width", the experiment adopted the self-inductance and metal space and area are keeping identical. According to the experiment result, demonstrates improvement of the metal resistance and quality. ”The ultra planar variable width design” is batter than "The pair of planar variable width".
Results of this study provide an effective algorithm to design minimal loss transformer for RFIC applications.
URI: http://hdl.handle.net/11455/7255
其他識別: U0005-0208200712110500
Appears in Collections:電機工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.