Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/7285
DC FieldValueLanguage
dc.contributor蕭錫鍊zh_TW
dc.contributor劉漢文zh_TW
dc.contributor黃家華zh_TW
dc.contributor.advisor江雨龍zh_TW
dc.contributor.author李季樺zh_TW
dc.contributor.authorLi, Chi-Huaen_US
dc.contributor.other中興大學zh_TW
dc.date2012zh_TW
dc.date.accessioned2014-06-06T06:39:50Z-
dc.date.available2014-06-06T06:39:50Z-
dc.identifierU0005-2908201110300600zh_TW
dc.identifier.citation[1] D. M. Chapin, C. S. Fuller and G. L. Pearson, J. Appl. Phys. 25, 676-677 (1954). [2] D. E. Carlson and C. R. Wronski, Appl. Phys. Lett. 28, 671-673(1975). [3] N. Beck, P. Torres, J. Fric, Z. Remes, A. Poruba, H.A. Stuchlikova, A. Fejfar, N. Wyrsch, M. Vanecek, J. Kocka and A. Shah, Proc. Mater. Res. Soc. Symp. 452,761 (1997). [4] D. L. Staebler and C. R. Wronski, Appl. Phys. Lett. 31,292(1977). [5] Y. L. Jiang, M. L. Lee and S. H. Chen, Mater. Res. Soc. Symp. 507,523-528(1998). [6] G. Lucovsky, C. Wang, R.J. Nemanich and M.J. Williams, Sol. Cells 30, 419(1991). [7] M. Faraji, S. Gokhale, S.M. Choudhari, M.G. Takwle and S.V.Ghaisas, Appl. Phys. Lett. 60, 3289(1992). [8] L. Guo, M. Kondo, M. Fukawa, K. Saitoh and A. Matsuda, Jpn. J. Appl. Phys. 37, L1116-L1118 (1998). [9] U. Kroll, A. Shah, H. Keppner, J. Meier, P. Torres and D. Fischer, Solar Energy Materials & Solar Cells. 48, 343-350 (1997). [10] J. Meier, R. Fluckiger and H. Keppner, A. Shah, Appl. Phys. Lett. 65, 860(1994). [11] R. Fl. uckiger, J. Meier, G. Crovini, F. Demichelis, F. Giorgis, C.F. Pirri, E. Tresso, J. Pohl, V. Rigato, S. Zandolin and F. Caccavale, Proc. Mater. Res. Soc. Symp. 358, 751(1995). [12] O. Vetter, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth , A. Lambertz and A. Muck, B. Rech and H. Wagner, Solar Energy Materials & Solar Cells 62, 97-108(2000). [13] E. Vallat- Sauvain, U. Kroll, J. Meier, A. Shah and J. Pohl, J. Appl. Phys. 87, 3137(2000). [14] U. Kroll, J. Meier, P. Torres, J. Pohl and A. Shah, J. Non-Cryst. Solids 68, 227-230 (1998). [15] M. Kondo, M. Fukawa, L. Guo and A. Matsuda, J. Non-Cryst. Solids 266-269, 84-89 (2000) [16] T. Matsui, M. Kondo and A. Matsuda, 3rd World Conferencen Photovoltaic Energy Conversion, Japan (2003). [17] M. Goerlitzer, P. Torres, N. Beck, N. Wyrsch, H. Keppner, J. Pohl and A. Shah, J. Non-Cryst. Solids 227–230, 996(1998). [18] T. Matsui, A. Matsuda and M. Kondo, Solar Energy Materials & Solar Cells 90, 3199–3204(2006). [19] A. H. M. Smets, T. Matsui and M. Kondo, J. Appl. Phys. 104, 034508 (2008) [20] Yuan-Min Li, Liwei Li, J.A. Anna Selvan, Alan E. Delahoy and Roland A. Levy. Thin Solid Films, Vol. 483, 84-88 (2005). [21] T. Fujibayashi and M. Kondo, J. Appl. Phys. 99, 043703(2006). [22] S.N. Agbo, J.Krcˇ, R.A.C.M.M. van Swaaij and M. Zeman, Solar Energy Materials & Solar Cells 94, 1864–1868(2010). [23] Urs Samuel Graf, “Single-chamber process development of microcrystalline Silicon solar cells and high-rate deposited intrinsic layers”, Universite de Neuchatel Institut de Microtechnique, Octobre 2005 . [24] 戴寶通教授、鄭晃忠教授,「太陽能電池技術手冊」,台灣電子材料與元件協會,2008。 [25] 趙學禮, 「非晶矽太陽能電池之材料成長、元件製作及特性分析」, 2007。 [26] Michio Kondo, Solar Energy Materials & Solar Cells 78, 543–566(2003). [27] Ni Jian, Chen Xin-Liang, Cao Li-Ran, Zhang Jian-Jun, Xue Jun-Ming, Sun Jian, Wang Xian-Bao, Han Dong-Gang, Zhang De-Kun, Zhao Ying, Geng Xin-Hua, Journal of Optoelectronics. Laser 21, 01(2010). [28] Joohyun Koh, A. S. Ferlauto, P. I. Rovira, C. R. Wronski, and R. W. Collins, Appl. Phys. Lett., 75, 2286-2288(1999). [29] R.W. Collins, A.S. Ferlauto, G.M. Ferreira, Chi Chen, Joohyun Koh, R.J. Koval, Yeeheng Lee, J.M. Pearce, C.R. Wronski,. Solar Energy Materials & Solar Cells 78, 143-180(2003) [30] P. Roca i Cabarrocas, N. Layadi, T. Heitz, B. Dre’ Villon, I. Solomon, Appl. Phys. Lett. 66 (26), 26 June 1995 [31] T. Matsui, M. Tsukiji, H. Saika, T. Toyama and H. Okamoto, Jpn. J. Appl. Phys. 41, 20–27(2002). [32] Madhμmita Nath, P. Roca i Cabarrocas , E.V. Johnson , A. Abramov , P. Chatterjee, Thin Solid Films, Vol. 516, 6974–6978(2008). [33] L. Feitknecht, O. Kluth, Y. Ziegler, X. Niquille, P. Torres, J. Meier, N. Wyrsch and A. Shah“Microcrystalline n-i-p solar cells deposited at 10 A/sec by VHF-GD”.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/7285-
dc.description.abstract本論文使用40.68 MHz超高頻電漿增強化學氣相沉積系統,改變i層功率密度、沉積壓力及p層氣體摻雜比例製作氫化微晶矽(μc-Si:H)薄膜。藉由拉曼光譜儀、X光繞射儀、掃描式電子顯微鏡、電流-電壓量測儀及量子效率測量儀,分析太陽電池的結構及電學特性變化。 p型μc-Si:H薄膜以改變摻雜氣體比例 (B2H6 / SiH4 = 0.25%~1% )製作。由結果顯示當p層摻雜氣體比例為0.25%時,結晶比例高,易誘發後續i層薄膜析出結晶,孵化層較薄,相反的當p層為非晶矽結構,抑制i層析出結晶,p/i介面載子傳導不佳,使得太陽電池特性下降。適當的p型微晶矽結構有助於i層的結晶成長及品質改善。 固定p層摻雜氣體比例為0.5%,改變i層沉積壓力由3至7 torr製作的太陽電池之實驗結果顯示當沉積壓力上升時,結晶比例逐漸下降,由SEM剖面結構可看出低壓時柱狀結晶截面小,較多的柱狀結晶造成較多的晶核邊界,使載子復合,降低長波長區段之電流響應。升高壓力可減少晶核邊界缺陷,使電性獲得改善。 固定p層摻雜氣體比例為0.25%,改變i層沉積壓力5~8 torr製作太陽電池。壓力於5、6及7 torr 時太陽電池結晶結構呈現垂直柱狀,而沉積壓力增加至7.5 torr時孵化層變厚,結晶結構呈現倒圓錐狀,最後於8 torr時為全非晶矽結構。電流-電壓結果顯示當沉積壓力於5、6及7 torr時,具有高的電流密度為典型微晶相的特徵,壓力於7.5 torr時,薄膜結構為微晶轉非晶的混合相,電流密度介於中間值,為微晶與非晶混和相所造成之結果,而壓力為8 torr時,具有明顯低的電流密度,此為非晶相的特徵。壓力5 ~ 7.5 torr時之太陽電池具有一定比例的微晶矽結構,故具有較低的開路電壓約為0.45 V,沉積壓力為8 torr的太陽電池僅具有非晶矽結構,開路電壓明顯上升至0.84 V。這些結果指出,沉積壓力於7 ~ 7.5 torr為微晶至非晶轉介區,介於轉介區邊界的7 torr太陽電池有最佳的薄膜特性及轉換效率。良好的氫化微晶矽太陽電池必須控制在微晶轉非晶的轉介區邊界,一般發生在較高壓的條件。zh_TW
dc.description.abstractIn this thesis, 40.68 MHz very-high-frequency plasma-enhanced chemical vapor deposition is used to fabricate μc-Si:H thin-film solar cells with changing the i-layer power density, deposition pressure and doping gas flow ratio of p-layer. The structural and electrical properties of solar cells are investigated by Raman spectrometer, x-ray diffraction, scanning electron microscope, current-voltage measurement and quantum efficiency measurement. P-type μc-Si:H thin films are fabricated by varying doping gas flow ratio of B2H6/SiH4 = 0.25%~1%. The results indicate that the ratio at 0.25% of p-layer has highest crystalline volume ratio (XC) which easy to induce the crystallization of i-layer so the incubation layer is thinner. On the contrary, the p-layer structure of amorphous phase suppresses the crystallization of i-layer, result in poor carrier conduction in p/i interface, and makes the solar cells properties deteriorate. Appropriate structure of microcrystalline P-type film can contribute to the growth and quality improvement of i-layer with microcrystalline phase. For the doping gas flow ratio of p-layer fixed at 0.5%, a series of solar cells are fabricated by changing deposition pressure of i-layer from 3 to 7 torr. The results indicate that increasing pressure decrease the crystalline volume ratio of the cells. Low-pressure deposition induces many columnar crystals with small cross section. There are many grain boundaries to make carrier recombination which reducing current response in long wavelength region. High-pressure deposition can reduce the grain boundary defects, then the electrical properties of solar cells can be improved. For the p-layer doping gas flow ratio fixed at 0.25%, a series of solar cells is fabricated by changing deposition pressure of i-layers from 5 to 8 torr. The results demonstrate that the solar cells are columnar structure for deposition pressure from 5 to 7 torr, further increasing the thickness of incubation layer the cone-shape crystalline structures are formed when pressure at 7.5 torr, and then the structure is whole amorphous phase for the 8 torr condition. Current-voltage measurement results show that the deposition pressure on the 5, 6 and 7 torr, the cells have the high current density which is typical characteristics of microcrystalline phase. The structure of 7.5-torr cell is mixed-phase of microcrystalline and amorphous phase that the current density has the middle value. The 8-torr cell is fully amorphous and has the lower current density which is the typical characteristic of amorphous phase. There have a certain percentage of microcrystalline phase for the solar cells deposited at 5 ~ 7.5 torr, therefore it has a lower open-circuit voltage of about 0.45 V. The open-circuit voltage of the amorphous phase of the 8-torr cell is increased to 0.84 V. These results illustrate that transition region from microcrystalline to amorphous occurred from 7 to 7.5 torr. The solar cell deposited at 7 torr is at boundary of transition region, and has the best performance and conversion efficiency. Good μc-Si:H solar cells must be fabricated at the boundary of transition region from microcrystalline to amorphous, which is generally controlled at high pressure condition.en_US
dc.description.tableofcontents第一章 緒論..............................................1 1.1 前言.........................................1 1.2 研究背景與動機.................................2 1.3 研究目的......................................3 1.4 研究架構流程...................................4 第二章 文獻回顧...........................................5 第三章 實驗方法與儀器分析.................................. 12 3.1 實驗製程設備.................................. 12 3.2 實驗流程..................................... 13 3.3 試片清洗步驟.................................. 15 3.4 實驗參數設計..................................16 3.4.1 單層膜參數設計..........................16 3.4.1.1 改變i層之沉積功率密度............16 3.4.1.2 改變i層之沉積氣體壓力............17 3.4.1.3 改變p層之摻雜氣體比例............17 3.4.2 太陽電池參數設計........................18 3.4.2.1 改變p層之摻雜氣體比例............18 3.4.2.2 改變i層之沉積氣體壓力............19 3.5 實驗量測方法..................................19 3.5.1 薄膜厚度量測............................19 3.5.2 薄膜結晶比例分析.........................20 3.5.3 薄膜結晶相量測...........................21 3.5.4 薄膜結晶型態量測..........................22 3.5.5 薄膜粗糙度量測............................22 3.5.6 太陽電池效率量測..........................22 3.5.7 量子效率量測.............................24 第四章 結果與討論..........................................25 4.1 單層膜氫化微晶矽薄膜分析.....................25 4.1.1 i層薄膜於不同沉積功率密度之探討.......25 4.1.1.1 沉積速率比較...............25 4.1.1.2 薄膜結晶比例(XC)分析........26 4.1.1.3 薄膜剖面之結晶型態分析.......28 4.1.2 i層薄膜於不同沉積壓力之探討...........29 4.1.2.1 沉積速率比較...............29 4.1.2.2 薄膜結晶比例分析............30 4.1.2.3 薄膜剖面之結晶型態分析.......32 4.1.3 p層薄膜於不同摻雜氣體比例之探討.......33 4.1.3.1 沉積速率比較...............33 4.1.3.2 薄膜結晶比例分析............34 4.2 太陽電池特性分析............................37 4.2.1 太陽電池與不同p層摻雜氣體比例關係之探討.37 4.2.1.1 太陽電池結晶比例分析.........37 4.2.1.2 太陽電池結晶型態分析.........39 4.2.1.3 太陽電池結晶相分析...........40 4.2.1.4 太陽電池表面粗糙度分析........41 4.2.1.5 太陽電池電學特性分析.........42 4.2.2 太陽電池與不同i層沉積壓力關係之探討.....46 4.2.2.1 太陽電池結晶比例分析.........46 4.2.2.2 太陽電池結晶型態分析.........49 4.2.2.3 太陽電池結晶相分析...........51 4.2.2.4 太陽電池表面粗糙度分析........54 4.2.2.5 太陽電池電學特性分析.........55 第五章 結論...............................................64 第六章 未來工作............................................66 第七章 參考文獻............................................67zh_TW
dc.language.isoen_USzh_TW
dc.publisher電機工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2908201110300600en_US
dc.subjecthydrogenated microcrystalline siliconen_US
dc.subject氫化微晶矽zh_TW
dc.subjectsolar cellen_US
dc.subject太陽電池zh_TW
dc.title以高壓空乏法製作氫化微晶矽薄膜太陽電池zh_TW
dc.titleFabrication of hydrogenated microcrystalline silicon thin-film solar cells by high pressure depletion methoden_US
dc.typeThesis and Dissertationzh_TW
item.languageiso639-1en_US-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:電機工程學系所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.