Please use this identifier to cite or link to this item:
標題: 異質接面結構與應變工程之應用在新穎光電及電子元件
Applications of Heterojunction Structures and Strain Engineering on Novel Optoelectronic Devices and Electronic Devices
作者: 孫柏行
Sun, Po-Hsing
關鍵字: MQW;重量子井;strained;stress;mobility;應變;應力;遷移率
出版社: 電機工程學系所
引用: References(Chapter 1) [1] Shockley, ‘‘Circuit element utilizing semiconductor material,'' U.S. Patent 2269347, September 25,1951. [2] Alferov, Zh. I., ‘‘Possible development of a rectifier for very high current densities on the bases of a p-i-n (p-n-n+,n-p-p+) structure with heterojunctions,'' Fiz. Tekh. Poluprovodn. 1, 436, 1966 . [3] H. Temkin, T. P. Pearsall, J. C. Bean, R. A. Lolgan and S. Luryi, “Avalanche Gain in Gex,Sil -x/Si Infrared Waveguide Detector,” IEEE Electron Device Letters, Vol., EDL-7, No. 5, pp. 330-332, MAY 1986. [4] V. P. Kesan, P. G. May, F. K. Legroues and S. S. Iyer, J. Cryst. Growth, 111(1991) 936. [5] S. Luryi, T. P. Pearsall, H. Temkin and J. C. Bean, “Waveguide Infrared Photodetectors on a Silicon Chip,” IEEE Electron Device Letters, Vol. EDL-7, No. 2, pp.104-107, FEBRUARY 1986. [6] Y. Xuan, Y. Wu, H. Lin, T. Shen, and P. Ye, “Submicrometer Inversion-Type Enhancement-Mode InGaAs MOSFET With Atomic-Layer-Deposited Al2O3 as Gate Dielectric,” Electron Device Letters, IEEE, Vol. 28, No. 11, pp. 935-938, 2007. [7] K. Rim, S. Koester, M. Hargrove, J. Chu, P. Mooney, J. Ott, T. Kanarsky, P. Ronsheim, M. Ieong, A. Grill et al., “Strained Si NMOSFETs for high performance CMOS technology,” VLSI Technology, 2001. Digest of Technical Papers. 2001 Symposium on, pp. 59-60, 2001. [8] W. Bai, N. Lu, A. Ritenour, M. Lee, D. Antoniadis, and D.-L. Kwong, “Ge n-MOSFETs on lightly doped substrates with high-κ dielectric and TaN gate,” Electron Device Letters, IEEE, Vol. 27, No. 3, pp. 175-178, March 2006. [9] S. Laux, “A Simulation Study of the Switching Times of 22-and 17-nm Gate-Length SOI nFETs on High Mobility Substrates and Si,” Electron Devices, IEEE Transactions on, Vol. 54, No. 9, pp. 2304-2320, 2007. [10] Zhores I. Alferov, “The double heterostructure concept and its applications in physics, electronics, and technology,” Rev. Mod. Phys., Vol. 73, No. 3, July 2001. References(Chapter 2) [1] P. Harrison, Quantum Wells, Wires and Dots, Second ed.: Wiley, 2005. [2] R. M. Martin, Electronic Structure: Basic Theory and Practical Methods, Cambridge: Cambridge University Press, 2004. [3] M. L. Cohen, and T. K. Bergstresser, “Band Structures and Pseudopotential Form Factors for Fourteen Semiconductors of the Diamond and Zinc-blende Structures,” Physical Review, Vol. 141, No. 2, pp. 789, January 1966, 1966. [4] J. R. Chelikowsky, and M. L. Cohen, “Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors,” Physcial Review B, Vol. 14, No. 2, pp. 556, 1976. [5] M. J. Shaw, “Microscoptic theory of scattering in imperfect strained antimonide- based heterostructures,” Physical Review B, Vol. 61, No. 8, pp. 5431, 15 February 2000. [6] R. Kubo, “Statistical-mechanical theory of irreversible process. I.” J. Phys. Soc. Jpn., Vol. 12, No. 6, pp. 570-586, Jun. 1957. [7] D. A. Greenwood, “The Boltzmann equation in the theory of electrical conduction in metals,” Proc. Phys. Soc. London, Vol. 71, pp. 585-596, 1958. [8] M. V. Fischetti, “Long-range Coulomb interactions in small Si devices. Part II. effective electron mobility in thin-oxide structures,” J. Appl. Phys., Vol. 89, No. 2, pp. 1232-1250, Jan. 2001. [9] M. V. Fischetti, Z. Ren, P. M. Solomon, M. Yang, and K. Rim, “Six-band k‧p calculation of the hole mobility in silicon inversion layers: Dependence on surface orientation, strain, and silicon thickness,” J. Appl. Phys., Vol. 94, No. 2, pp. 1079-1095, Jul. 2003. [10] C. Herring and E. Vogt, “Transport and deformation-potential theory for many valley semiconductors with anisotropic scattering,” Phys. Rev., Vol. 101, No. 3, pp. 944-961, Feb 1956. [11] M. V. Fischetti, F. G&acute;amiz, andW. H&uml;ansch, “On the enhanced electron mobility in strained-silicon inversion layers,” Journal of Applied Physics, Vol. 92, No. 12, pp. 7320-7324, 2002. [12] T. Ando, “Electronic properties of two-dimensional systems,” Rev. Mod. Phys., Vol. 54, No. 2, pp. 437-672, Apr. 1982. [13] D. A. Dahl and L. J. Sham, “Electrodynamics of quasi-two-dimensional electrons,” Phys. Rev. B, Vol. 16, No. 2, pp. 651-661, Jul 1977. [14] T. Ando, A. B. Fowler, and F. Stern, “Electronic properties of two-dimensional systems,” Rev. Mod. Phys., Vol. 54, No. 2, pp. 437-672, Apr. 1982. [15] S. M. Goodnick, D. K. Ferry, C. W. Wilmsen, Z. Liliental, D. Fathy, and O. L. Krivanek, “Surface roughness at the Si(100)-SiO2 interface,” Phys. Rev. B, Vol. 32, No. 12, pp. 8171-8186, Dec. 1985. [16] Yan Zhang, “Hole Mobility in Strained Ge and III-V P-channel Inversion Layers with Self-consistent Valence Subband Structure and High-k Insulators,” (2010). Open Access Dissertations. pp45. [17] M. V. Fischetti, D. A. Neumayer, and E. A. Cartier, “Effective electron mobility in Si inversion layers in metal-oxide-semiconductor systems with a high-κ insulator: The role of remote phonon scattering,” J. Appl. Phys., Vol. 90, No. 9, pp. 4587-4608, Nov. 2001. [18] R. Kotlyar, M. Giles, P. Matagne, B. Obradovic, L. Shifren, M. Stettler, and E. Wang, “Inversion mobility and gate leakage in high-k/metal gate MOSFETs,” Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International, pp. 391-394, 2004. [19] Terrance P. O'regan, “Electron Mobility Calculations in Silcon, Germanium, and III-V Substrates with High-κ Gate Dielectrics,” Open Access Dissertations. pp42, 2008. [20] M. A. Stroscio, “Interaction between longitudinal-optical-phonon modes of a rectangular quantum wire and charge carriers of a one-dimensional electron gas,” Phys. Rev. B, Vol. 40, No. 9, pp. 6428-6431, Sep 1989. [21] J. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys., Vol. 53, pp. R123, 1982. [22] K. Yokoyama and K. Hess, “Monte Carlo study of electronic transport in Al_{1-x} Ga_{x}As/GaAs single-well heterostructures,” Physical Review B, Vol. 33, No. 8, pp. 5595-5606, 1986. [23] R. W. Kelsall and R. A. Abram. Semicond. Sci. Technol., 7(3), 1992. [24] M. V. Fischetti and S. E. Laux, “Monte carlo study of electron transport in silicon inversion layers,” Phys. Rev. B, Vol. 48, No. 4, pp. 2244-2274, Sep. 1993. References(Chapter 3) [1] Ning Li, Rubin Sidhu, Xiaowei Li, Feng Ma, Xiaoguang Zheng, Shuling Wang, Gauri Karve, Stephane Demiguel, Archie L. Holmes, Jr., and Joe C. Campbell, “ InGaAs/InAlAs avalanche photodiode with undepleted absorber,” Appl Phys Lett., Vol.82, pp.2175-2177, 31 March 2003. [2] G. S. Kinsey, J. C. Campbell, and A. G. Dentai, “Waveguide avalanche photodiode operating at 1.55μm with a gain-bandwidth product of 320GHz,” IEEE Photonics Technology Letters, Vol. 13, No. 8, pp. 842-844, August 2001. [3] Cheng Li, Qinqing Yang, Hongjie Wang, Jinzhong Yu, Qiming Wang, Yongkang Li, Junming Zhou, Hui Huang, and Xiaoming Ren, “Back-Incident SiGe-Si Multiple Quantum-Well Resonant-Cavity-Enhanced Photodetectors for 1.3μm operation,” IEEE Photonics Technology Journal, Vol. 12, No. 10, pp. 1373-1375, October 2000. [4] Pei Z, Liang CS, Lai LS, Tseng YT, Hsu YM, Chen PS, Chen SC, Lu SC, Tsai MJ, Liu CW, “A high-performance SiGe-Si Multiple-Quantum-Well Heterojunction Phototransistor,” IEEE Electron Device Letters, Vol. 24, No. 10, pp.643-645, October 2003. [5] Roosevelt People, “Physics and Applications of GexSi1-x/Si Strained-Layer Heterostructures,” IEEE Journal of Quantum Electronics, Vol. QE-22, No. 9, pp.1696-1710, September 1986. [6] Luryi S, Pearsall TP, Temkim H, and Bean JC, “ Waveguide Infrared Photodetectors on Silicon Chip,” IEEE Electron Device Letters, Vol. EDL-7, No. 2, pp. 104-107, February 1986. [7] Braunstein R, Moore AR, and Herman F., “Intinsic Optical Absorption in Germanium-Silicon Alloys,” Physical Review, Vol. 109, No. 3, pp 695-710, February 1, 1958. [8] J. Weber and M.I. Alonso, “Near-band-gap photoluminescence of Si-Ge alloys,” Physical Review B, Vol.40, No.8, pp.5683-5693, 15 September 1989-I. [9] Pankove JI. Optical Processes in Semiconductors. Dover Publications, NY, 1971:34-86. [10] “Handbook of Optical Constants”, Sentaurus-SDevice User's Manual. [11] W.C. Dash and R. Newman, “Intrinsic Optical Absorption in Single-Cristal Germanium and Silicon at 770K and 3000K,” Physical Review, Vol. 99, No. 4, pp.1151-1155, 15 August 1955. [12] L. Naval, B. Jalali, L. Gomelsky, and J.M. Liu, “Optimization of Si1-xGex/Si Waveguide Photodetectors Operating at at λ=1.3 μm,” Lightwave Technology, Journal of, vol. 14 Issue: 5, pp. 787 -797, May 1996. [13] D.V. Lang, R. People, J.C. Bean and A.M. Sergent, “Measurement of the band gap of strained-layer heterostructures,” Appl. Phys. Lett. 47, pp. 1333-1335, 15 December 1985. [14] A. Vonsovici, L. Vescan, R. Apetz, A. Koster, and K. Schmidt, “ Room Temperature Photocurrent Spectroscopy of SiGe/Si p-i-n Photodiodes Grown by Selective Epitaxy,” IEEE Transactions on Electron Devices, pp. 538-542 , Feb. 1998. [15] Silvaco user manual, 2008. [16] M.H. Woods, W.C. Johnson, and M.A. Lampert, “Use of a schottky barrier to measure impact ionization coefficients in semiconductors,” Solid-State Electron, Vol. 16, pp. 38 l-394, 1973. [17] N.L. Rowell and R.B. Young. Proc. SPIE. 1989;1145:80 References(Chapter 4) [1] R. Chau, J. Brask, S. Datta, G. Dewey, M. Doczy, B. Doyle, J. Kavalieros, B. Jin, M. Metz, A. Majumdar and M. Radosavljevic, “Application of high-k gate dielectrics and metal gate electrodes to enable silicon and non-silicon logic nanotechnology,” Microelectronic Engineering, Vol. 80, pp.1-6, 2005. [2] M. K. Hudait, G. Dewey, S. Datta, J. M. Fastenau, J. Kavalieros, W. K. Liu, D. Lubyshev, R. Pillarisetty, W. Rachmady, M. Radosavljevic, T. Rakshit, and Robert Chau, “Heterogeneous integration of enhancement mode In0.7Ga0.3As quantum well transistor on silicon substrate using thin (< 2um) composite buffer architecture for high-speed and low-voltage ( 0.5V) logic applications,” IEDM Tech Dig., pp.625-628, 2007. [3] S. Suthram, P. Majhi, G. Sun, P. Kalra, H. Harris, K. Choi, D. Heh, D. Oh, D. Kelly, R. Choi, B. Cho, M. Hussain, C. Smith, S. Banerjee, W. Tsai, S. Thompson, H. Tseng, and R. Jammy,“High Performance pMOSFETs Using Si/Si1-xGex/Si Quantum Wells with High-k/Metal Gate Stacks and Additive Uniaxial Strain for 22 nm Technology Node,” IEDM Tech Dig., pp.727-730, 2007. [4] S. Suthram, Y. Sun, P. Majhi, I. Ok, H. Kim, H. R. Harris, N. Goel, S. Parthasarathy, A. Kohler, A. Acosta, T. Nishida, H. H. Tseng, W. Tsai, J. Lee, R. Jammy, and S. Thompson,“Strain Additivity in III-V Channels for CMOSFETs beyond 22nm Technology Node,” Symp on VLSI Tech Dig. pp.182-183, 2008. [5] H. C. Chin, X. Gong, X. Liu, Z. Lin, and Y.C Yeo, “Strained In0.53Ga0.47As n-MOSFETs: Performance Boost with in-situ Doped Lattice-Mismatched Source/Drain Stressors and Interface Engineering ,” Symp on VLSI Tech Dig. pp.244-245, 2009. [6] Yee-Chia Yeo,” Enhancing CMOS transistor performance using lattice mismatched materials in source/drain regions ,” Semicond Sci Technol 22, S177-182, 2007. [7] ANSYS User's manuals, 2006. [8] Nextnano3 simulation tools: [9] G. B. Bachelet, D.R. Hamann, M. Schlueter, “Pseudopotentials that work: From H to Pu,” Physical Review B 26, pp.4199-4228, 1982. [10] F. M. Bufler, F. O. Heinz, A. Tsibizov, and M. Oulmane, &quot;Simulation of <110> nMOSFETs with a Tensile Strained Cap Layer,&quot; ECS Transactions, vol. 16, no. 10, pp. 91-100, 2008. [11] Y.-C. Yeo and J. Sun, &quot;Finite element study of strain distribution in transistor with silicon-germanium source and drain regions,&quot; Applied Physics Letters, vol. 86, no. 2, 023103, Jan. 2005. [12] H.-C. Chin, X. Gong, X. Liu, and Y.-C. Yeo, &quot;Lattice mismatched In0.4Ga0.6As source/drain stressors with in situ doping for strained In0.53Ga0.47As channel n-MOSFETs,&quot; IEEE Electron Device Letters, vol. 30, no. 8, pp. 805-807, Aug. 2009. [13] T. O'Regan, M. Fischetti, “Electron mobility in silicon and germanium inversion layers: The role of remote phonon scattering,” Journal of Computational Electronics, Vol. 6, Numbers 1-3, pp. 81-84, 2007. [14] Y. Hori, Y. Ando, Y. Miyamoto, O. Sugino, “Effect of strain on band structure and electron transport in InAs,” Solid-State Electronics 43,pp.1813-1816, 1999. [15] M. V. Fischetti, S. E. Laux , “Monte carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects ,” Physical Review B 38, pp.9721-9745, 1988. [16] M. V. Fischetti, S. E. Laux, “Monte Carlo study of electron transport in silicon inversion layers ,” Physical Review B, vol. 48, pp.2244-2274, 1993. [17] M. V. Fischetti, D. A. Neumayer, and E. A. Cartier, “Effective electron mobility in Si inversion layers in metal-oxide-semiconductor systems with a high- insulator: The role of remote phonon scattering,” Journal of Applied Physics, pp. 4587-4608, 2001. [18] Y. Sun, S. E. Thompson, and T. Nishida, Strain Effect in Semiconductors: Theory and Device Applications, (Springer, New York, 2010), Chap. 5. [19] S. Takagi, T. Sugano, “Effective mobility of electrons in surface layer of semi‐insulating and p‐type InP substrates,” Journal of Applied Physics 62, pp.2387- 2391, 1987. [20] H. J. G. Meijer, D. Polder, ” Note on polar scattering of conduction electrons in regular crystals,” Physica, Vol. 19, Issues 1-12, pp.255-264, 1953.
在本篇論文之中,第一個部分是探討一種新型SiGe/Si 多重量子井(multiple quantum wells, MQW)與i-SiGe層結構之pin累增光二極體(Avalanche Photodiodes, APD)光電元件的效能。此種結構之pin APD光電元件是使用超高真空化学氣相沉積系統所成長製造,並且此光電元件之響應在近的红外波光譜(800-1500柰米)。
第二個部分是使用商用模擬軟體ANSYS來分析In0.4Ga0.6As應力源(S/D stressor)對應變In0.53Ga0.47As半導體電晶體元件特性之影響。分析發現沿傳輸方向的應力主導整個遷移率增益, 然而,當寬度在1 μm以下時,沿著通道道方向(Sxx)之拉伸應變亦變小,造成遷移率的增益降低。

In this dissertation, the first part is a study on the performance of new type of pin APDs with a SiGe/Si MQW(multiple quantum wells) structure and i-SiGe layer, which was fabricated using an ultrahigh-vacuum chemical vapor deposition (UHV/CVD) system. SiGe MQW APD with a response in the near infrared spectrum (800-1500 nm) is reported. The origin of the detection is due to optical absorption and multiplication in the SiGe MQW region and i-SiGe layer.
The second part is that we performed the stress distribution in a strained In0.53Ga0.47As channel and the impact of channel width and channel length on the device performance using commercial stress simulation tool, ANSYS. The resulting mobility gain was analyzed. Tensile stress along the transport direction was found to dominate mobility gain. However, for NMOSFETs with In0.4Ga0.6As S/D stressors and a width below 1 μm, the shrinkage of tensile stress along the channel direction (Sxx) contributes to the decrease of the mobility gain owing to the decreasing width.
其他識別: U0005-3006201113130000
Appears in Collections:電機工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.