Please use this identifier to cite or link to this item:

`http://hdl.handle.net/11455/7322`

標題: | 適用於多維度影像之無失真資料壓縮與嵌入式系統實現 Lossless Data Compression for Multi-Dimension Images and Its Embedded System Implementation |

作者: | 林振誠 Lin, Cheng-Chen |

關鍵字: | lossless compression;無失真壓縮;adaptive filter;Multi-Dimension Images;Embedded System;HW/SW codesign;適應性濾波器;多維度影像;嵌入式系統;軟硬體共設計 |

出版社: | 電機工程學系所 |

引用: | [1] MRI Images, [Online]. Available: http://www.slicer.org/ [2] J. R. Fogler, “Multi- and Hyper-Spectral Sensing for Autonomous Ground Vehicle Navigation”, Sandia National Labs, Sandia Report SAND, 2003. pp 25-29. [3] AVIRIS Images in CCSDS test set, Jet Propulsion Laboratory, NASA. [Online]. Available: http://compression.jpl.nasa.gov/hyperspectral [4] “JPEG-LS; Lossless and near-lossless coding of continuous tone still image,” ISO/IEC JTC 1/SC 29/WG 1 FCD 14495, July 1997. [5] M. J. Weinberger, G. Seroussi, G. Sapiro, “The LOCO-I lossless image compression algorithm : principles and standardization into JPEG-LS”, IEEE Trans. Image Process., 2000, 9, pp. 1309-1324 [6] N. Memon and X. Wu, “Context-based adaptive, lossless image coding,” IEEE Trans. Commun., vol. 45, no. 4, pp. 437-444, Apr. 1997. [7] X. Wu and K. Barthel, “Piesewise 2D autoregression for predictive image coding,” in Proc. Int. Conf. Image Process., vol. 3, Oct. 1998, pp. 901-905. [8] M. Kwon et al., “Lossless image coder with context-based minimizing MSE prediction and entropy coding,” in Proc. Int. Symp. Circuits Systems, vol. 4, 1999, pp. 479-482. [9] G. Motta et al., “Adaptive linear prediction lossless image coding,” in Proc. Data Compression Conf., Mar. 1999, pp. 491-500. [10] H. Ye, G. Deng, and J. Devlin, “Least squares approach for lossless image coding,” in Proc. 5th Int. Symp. Signal Process. Applications, vol. 1, 1999, pp. 63-66. [11] X. Li and M. Orchard, “Edge directed prediction for lossless compression of natural images,” in Proc. Int. Conf. Image Process., vol. 4, Oct. 1999, pp. 58-62. [12] M. T. Orchard and X. Li,”Edge-directed prediction for lossless compression of natural images,” IEEE Trans. Image process., vol. 10, pp.813-817, June 2001. [13] A. Skodras, C. Christopoulos, and T. Ebrahimi, “The JPEG 2000 still image compression standard,” IEEE Signal Process. Mag., vol. 18, no. 5, pp. 36-58, Sept. 2001. [14] M. J. Ryan and J. F. Arnold, “The lossless compression of AVIRIS images by vector quantization,” IEEE Trans. Geosci. Remote Sens., vol. 35, no. 3, pp. 546-550, May 1997. [15] M. R. Pickering and M. J. Ryan, “Efficient spatial-spectral compression of hyperspectral data,” IEEE Trans. Geosci. Remote Sens., vol. 39, no. 7, pp. 1536-1539, Jul. 2001. [16] G. Motta, F. Rizzo, and J. A. Storer, “Compression of hyperspectral imagery,” in Proc. DCC, Mar. 2003, pp. 333-342. [17] J. Mielikäinen and P. Toivanen, “Improved vector quantization for lossless compression of AVIRIS Images,” in Proc. Eur. Signal Process. Conf., Sep. 2002, pp. 495-497. [18] F. Khelifi, F. Kurugollu and A. Bouridane, “SPECK-based lossless multispectral images coding,” IEEE Signal Process. Lett., vol. 15, pp. 69-72, Dec. 2008. [19] X. Tang, S. Cho and W. A. Pearlman, “3D set partitioning coding method in hyperspectral image compression”, in Proc. ICIP, Sept. 14-17, 2003, pp. 239-242. [20] Y. Hou and G. Liu, “Hyperspectral image lossy-to-lossless compression using the 3D embedded zeroblock coding algorithm,” in Proc. EORSA, Jun. 2008, pp. 1-6. [21] B. Penna, T. Tillo, E. Magli, and G. Olmo, “Progressive 3-D coding of hyperspectral images based on JPEG 2000,” IEEE Geosci. Remote Sens. Lett., vol. 3, no. 1, pp. 125-129, Jan. 2006. [22] B. Baizert, M. Pickering, and M. Ryan, “Compression of hyperspectral data by spatial/spectral discrete cosine transform,” in Proc. Int. Geosci. Remote Sens. Symp., vol. 4, Jul. 2001, pp. 1859-1861. [23] L. Galli and S. Salzo, “Lossless hyperspectral compression using KLT”, in Proc. Int. Geosci. Remote Sens. Symp., vol. 1, Dec. 2004, pp. 313-316. [24] R. E. Roger and M. C. Cavenor, “Lossless compression of AVIRIS images,” IEEE Trans. Image Process., vol. 5, no. 5, pp. 713-719, May 1996. [25] N. D. Memon, K. Sayood, and S. Magliveras, “Lossless compression of multispectral image data,” IEEE Trans. Geosci. Remote Sens., vol. 32, no. 2, pp. 282-289, Mar. 1994. [26] X. Wu and N. D. Memon,”Context-based lossless interband compression-extending CALIC,” IEEE Trans. Image Process., vol. 9, no. 6, pp. 994-1001, Jun. 2000. [27] E. Magli, G. Olmo and E. Quacchio, “Optimized Onboard Lossless and Near-Lossless Compression of Hyperspectral Data Using CALIC,” IEEE Geosci. Remote Sens. Lett., vol. 1, no. 1, pp. 21-25, Jan. 2004. [28] E. Magli, “Multiband Lossless compression of hyperspectral images,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 4, pp. 1168-1178, Apr. 2009. [29] S. Hunt and L. S. Rodriguez, “Fast piecewise linear predictors for lossless compression of hyperspectral imagery,” in Proc. Int. Geosci. Remote Sens. Symp., vol. 1, Dec. 2004, pp. 309-312. [30] J. Mielikainen, P. Toivanen, and A. Kaarna, “Linear prediction in lossless compression of hyperspectral images,” Opt. Eng., vol. 42, no. 4, pp. 1013-1017, Apr. 2003. [31] F. Rizzo, B. Carpentieri, G. Motta, and J. A. Storer, “High performance compression of hyperspectral imagery with reduced search complexity in the compressed domain,” in Proc. DCC, Mar. 23-25, 2004, pp. 479-488. [32] F. Rizzo, B. Carpentieri, G. Motta and J. A. Storer,”Low-complexity lossless compression of hyperspectral imagery via linear prediction,” IEEE Signal Process. Lett., vol. 12, no. 2, pp. 138-141, Feb. 2005. [33] B. Aiazzi, L. Alparone, S. Baronti, and C. Lastri, “Crisp and fuzzy adaptive spectral predictions for lossless and near-lossless compression of hyperspectral imagery,” IEEE Geosci. Remote Sens. Lett., vol. 4, no. 4, pp. 532-536, Oct. 2007. [34] S. Jain and D. Adjeroh, “Edge-based prediction for lossless compression of hyperspectral images,” in Proc. DCC, Snowbird, UT, 2007, pp. 153-162. [35] L. Bai, M. He and Y. Dai, “Lossless compression of hyperspectral images based on 3D context prediction,” in Proc. ICIEA, Jun. 2008, pp. 1845-1848. [36] H. Wang, S. Derin Babacan and K. Sayood, “Lossless hyperspectral-image compression using context-based conditional average,” IEEE Trans. Geosci. Remote Sens., vol. 45, no. 12, pp. 4187-4193, Dec. 2007. [37] P. Toivanen, O. Kubasova, and J. Mielikainen, “Correlation-based band-ordering heuristic for lossless compression of hyperspectral sounder data,” IEEE Trans. Geosci. Remote Sens. Lett., vol. 2, no. 1, pp. 50-54, Jan. 2005. [38] S.F. Tate, “Band ordering in lossless compression of multispectral images,” IEEE Trans. Comput., vol. 46, no. 46, pp. 477-483, Apr. 1997. [39] J. Zhang and G. Liu, “An efficient reordering prediction-based lossless compression algorithm for hyperspectral images,” IEEE Geosci. Remote Sens. Lett., vol. 4, no. 2, pp. 283-287, Apr. 2007. [40] J. Mielikainen and P. Toivanen, “Clustered DPCM for the lossless compression of hyperspectral images,” IEEE Trans. Geosci. Remote Sens., vol. 41, no. 12, pp. 2943-2946, Dec. 2003. [41] B. Aiazzi, P. Alba, L. Alparone, and S. Baronti, “Lossless compression of multi/hyper-spectral imagery based on a 3-D fuzzy prediction,” IEEE Trans. Geosci. Remote Sens., vol. 37, no. 5, pp. 2287-2294, Sep. 1999. [42] J. Mielikainen, “Lossless compression of hyperspectral images using lookup tables,” IEEE Signal Process. Lett., vol. 13, no. 3, pp. 157-160, Mar. 2006. [43] B. Huang and Y. Sriraja, “Lossless compression of hyperspectral imagery via lookup tables with predictor selection,” in Proc. SPIE, vol. 6365, pp. 63650L.1-63650L.8, 2006. [44] J. Mielikainen and P. Toivanen, “Lossless compression of hyperspectral images using a quantized index to lookup tables,” IEEE Geosci. Remote Sens. Lett., vol. 5, no. 3, pp. 474-478, Jul. 2008. [45] B. Aiazzi, P. Alba, S. Baronti, and L. Alparone, “Lossless compression of hyperspectral images using multiband lookup table,” IEEE Signal Process. Lett., vol. 16, no. 6, pp. 481-484, Jun. 2009. [46] A. Kiely, and M. Klimesh, “Exploiting calibration-induced artifacts in lossless compression of hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 8, pp. 2672-2678, Aug. 2009. [47] AVIRIS Images in CCSDS test set, Jet Propulsion Laboratory, NASA. [Online]. Available: http://compression.jpl.nasa.gov/hyperspectral [48] Final Draft International Standard for Advanced Video Coding (ITU-T Rec. H.264 | ISO/IEC 14496-10 AVC) Approved for final editing period with delivery by 31 March 2003. [49] Iain E. G. Richardson, The Robert Gordon University, Aberdeen, UK “H.264 and MPEG-4 Video Compression” WILEY, 2004. [50] N. D. Memon and K. Sayood, “Lossless compression of video sequences,” IEEE Trans. Commun., vol. 44, no 10, pp. 1340-1345, Oct. 1996. [51] D. Brunello, G. Calvagno, and others “Lossless compression of video using temporal information,” IEEE Trans. Image Process., vol. 12, no. 2, pp. 132-139, Feb 2003. [52] S. -G. Park, E. J. Delp, and H. Yu, “Adaptive lossless video compression using an integer wavelet transform,” in Proc. Int. Conf. Signal Process., 2004, pp. 2251-2254. [53] Y. Li and K. Sayood, “Lossless video sequence compression using adaptive prediction,” IEEE Trans. Image Process., vol. 16, no. 4, pp. 997-1007 April 2007. [54] J. Jiang and G. Xiao, “Adding Lossless video compression to MPEGs”, IEEE Trans. Multimedia, vol. 8, pp. 622-625, June 2006 [55] J. Jiang, J. Xia and G. Xiao, “MPEG-2 based lossless video compression”, IEE proc.-Vis. Image process., vol. 153, No. 2, April 2006 [56] Z. Ming-feng, H. Jia and Z. Li-ming, “Lossless video compression using combination of temporal and spatial prediction,” in Proc. Int. Conf. Neural Network & Signal Process., Dec. 2003, pp.1193-1196. [57] E. S. G. Carotti and J. C. De Martin, “Motion-compensated lossless video coding in the CALIC framework,” IEEE International symposium on Signal Process. and Information Techn., Dec. 2007, pp.600-605. [58] Y. T. Hwang, C. C. Lin, K. H. Tseng and Y. C. Chang, ”Scalable lossless video coding based on adaptive motion compensated temporal filtering,” IEEE International symposium on multimedia workshops, Dec. 2007, pp.421-426. [59] S. Choi and J. W. Woods, “Motion-Compensated 3-D subband coding of video,” IEEE Trans. Image process., vol. 8, no. 2, pp. 155-167, Feb. 1999. [60] P. Chen and J. W. Woods, “Bidirectional MC-EZBC with lifting implementation,” IEEE Trans. Circuits Syst. Video Techn., vol. 14, no. 10, Oct. 2004 [61] J. -R. Ohm, “Three-dimensional subband coding with motion compensation,” IEEE Trans. Image process., vol. 3, pp.559-571, Sept. 1994. [62] Y. -G. Wang and F. Liang, “Improved adaptive group of pictures structure”, Electornics Letters, vol. 42, October 2006 [63] C. -W. Chiou, C. -M. Tsai and C. -W. Lin,” Fast mode decision algorithms for adaptive GoP structure in the scalable extension of H.264/AVC”, IEEE International Symposium on Circuits and System, May 2007 [64] H. Schwarz, D. Marpe, and T. Wiegand, ”Overview of the scalable H.264/MPEG4-AVC extension”, IEEE International Conference on Image Processing, Atlanta, GA, USA, October 2006 [65] T. Tanaka, Y. Murakami, and F.J. Theis, “A Fast Predictive Lossless Coder for fMRI Data Sets,” in Proc. Int. Conf. Image Process., vol. 11, Oct. 2006, pp. 2529-2532. [66] V. Sanchez, P. Nasiopoulos, and R. Abugharbieh, “Lossless compression of 4D medical images using H.264/AVC,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), vol. 2, May 2006, pp. II 1116-1119. [67] V. Sanchez, P. Nasiopoulos, and R. Abugharbieh, “Efficient Lossless Compression of 4-D Medical Images Based on the Advanced Video Coding Scheme,” IEEE Trans. Inf. Technol. Biomed., vol. 12, no. 4, pp. 442-446, Jul. 2008. [68] V. Sanchez, P. Nasiopoulos, and R. Abugharbieh, “Novel Lossless fMRI Image Compression Based on Motion Compensation and Customized Entropy Coding,” IEEE Trans. Inf. Technol. Biomed., vol. 13, no. 4, pp. 645-655, Jul., 2009. [69] S. G. Miaou, F. S. Ke, and S. C. Chen, “A Lossless Compression Method for Medical Image Sequences Using JPEG-LS and Interframe Coding,” IEEE Trans. Inf. Technol. Biomed., vol. 13, no. 5, pp. 818-821, Sept., 2009. [70] V. Sanchez, R. Abugharbieh, and P. Nasiopoulos, “Symmetry-Based Scalable Lossless Compression of 3D Medical Image Data,” IEEE Trans. Med. Imag., vol. 28, no. 7, pp. 1062-1072, Jul., 2009. [71] C. C. Lin, Y. T. Hwang, Y. C. Chang, J. J. Chen, and M. W. Liu " Lossless Coding of Multiband Images Using Interband Data Correlation and Error Feedback Prediction Scheme", IIH-MSP-2010, Otc. 2010, pp.600-605. [72] F. Rizzo, B. Carpentieri, G. Motta and J. Storer, ”Low complexity lossless compression of hyperspectral imagery via linear prediction,” IEEE Signal Process. Lett., vol. 12, no. 2, pp. 138-141, Feb. 2005. [73] M. Klimesh, “Low complexity adaptive lossless compression of hyperspectral imagery,” Proc. SPIE, vol. 6300, pp. 63000N-1~9, Sep. 2006. [74] T. W. Fry and S. Hauck, “Hyperspectral image compression on reconfigurable platforms,” in Proc. 10th Annu. IEEE Symp. Field-Program. Custom Comput. Mach., Napa, CA, 2002, pp. 251-260. [75] N. Aranki, C. Villalpando, J. Namkung, A. Kiely, M. Klimesh and H. Xie, “Hyperspectral Data Compression on Reconfigurable Platforms,” NASA New Technology Report NPO-42834. [76] G. Yu, T. Vladimirova, X. Wu and M. N. Sweeting, “A New High-Level Reconfigurable Lossless Image Compression System for Space Applications,” in Proc. NASA/ESA Conf. Adapt. Hardware Syst. (AHS 2008), Noordwijk, The Netherlands, 2008, pp. 183-190. [77] N. Aranki, A. Bakhshi, D. Keymeulen and M. Klimesh, “Fast and Adaptive Lossless On-Board Hyperspectral Data Compression System for Space Applications”, in Proc. NASA/ESA Conf. Adapt. Hardware Syst. (AHS 2009), San Francisco, CA, 2009, pp. 1-8. [78] T. Haijiang and S. KAMATA, “A Gradient Based Predictive Coding for Lossless Image Compression,” IEICE Trans. Inf. & Syst., vol. E89-D, no. 7, pp. 2250-2256, July 2006. [79] “Arithmetic Coding”, Ch. 7, Fundamentals of Multimedia , edited by Z. N Li, M.S Drew, 2004, Pearson Education International. |

摘要: | 本論文提出一個有效多維度影像無失真壓縮系統。目標在於不改變內容前提下減少資料傳送的頻寬與儲存空間，應用包括醫學影像、衛星影像、數位影像的保存諸如此類。目前標準無失真壓縮演算法如JPEG-LS、JPEG 2000、 CALIC以及I-CALIC，其壓縮效率仍不能滿足需求。我們提出的系統分為三個部分，包含前處理、預測和編碼。首先，前處理主要分析輸入影像特性如影像成影特性以及資料相關性。依據資料型態，預測能夠實現於時間、空間、頻譜和體積域 (4-D)。預測技術包含最小平方(Least Square)、Weiner filtering與線性/非線性預測。而在某些領域呈現突出的資料相關性，並且有助於預測在這些領域利用更多的資料相關性獲得更好預測效率，例如多頻帶影像的頻譜域和視訊資料的時間域。預測能夠更進一步搭配資料轉換以提高性能。對於此組合方案，一個動態補償時間濾波器（MCTF）搭配小波轉換結合已經被提出。編碼技術包含前文參考之適應性算術編碼(CBAAC) 和前文參考之 Golomb-Rice 編碼(CBGRC) 壓縮技術。基於這個架構，針對不同型態的影像發展出對應的無失真壓縮系統，包括第三章節到第五章節所描述之視訊、醫學影像和多頻帶影像無失真壓縮系統。 這些系統經由實驗驗證，都呈現非常良好之壓縮效率。對於視訊影像，借助適應性MCTF和空間預測幫助，該系統可以獲得 2至4倍壓縮率。對於單一或4-D醫學影像資料，結合適應性最小平方預測、適應性誤差反饋和上下文編碼的壓縮系統，可達成4到8倍的壓縮率。多頻帶影像在頻譜域中呈現出強烈資料相關性，採用兩階段預測與一階熵編碼技術的壓縮系統最佳可獲致4倍的壓縮率。相較於現有先進壓縮演算法如JPEG-LS、JPEG2000 與 I-CALIC，本論文所提出之各類壓縮系統皆有較佳之表現。 除了演算法開發之外，本論文中也探討系統實現問題。根據第五章節所提出多頻帶影像壓縮系統，第六章中探討採用ARM+FPGA嵌入式平台上的系統實現。依據軟硬體共設計原理，將運算需求較高的模組(如預測模組)以硬體加速器實現在FPGA，其餘部分以軟體方式實現。除此之外，並套用了各種軟硬體設計最佳化技術。最後系統實現的處理速度，相較於單純軟體系統，可提升21倍之多。使用TSMC 0.18um 1P6M CMOS技術，也完成了硬體加速器的晶片設計。當運作40MHz條件下，最大資料處理速率為每秒16.5Mpixel。晶片設計大小為5.38 mm2，而量測功率消耗為169 mW@ 40MHz。 In this dissertation, a lossless data compression system for multi-dimension images is proposed. Lossless compression is essential to those applications where information loss during the compression process is not acceptable; and multi-dimension images are those with volumetric data in 3 or even higher dimensions. Our goal is to achieve high compression efficiency to alleviate the massive data storage and communication bandwidth problems. Target applications include digital image/video archiving, medical images for diagnosis, and hyperspectral images for satellite remote sensing. Current lossless compression tools such as JPEG-LS, JPEG 2000, CALIC and CALIC fail to provide satisfactory compression rate, which confines their applications mostly to 2-D images only. In the dissertation, the proposed lossless compression system consists of 3 processing modules, i.e., pre-processing, prediction, and residual coding. The pre-processing module assumes the role of image analysis, which includes extracting the image features and the data correlation. Depending on the data types, the prediction is performed along the temporal, spatial, spectral and even volumetric (4-D) domains. The employed prediction schemes include least square, Weiner filtering, and linear/non-linear predictions. Although more prominent data correlation may appear in certain domains, e.g. the spectral domain in hyperspectral images and the time domain in video data, supplementary prediction applied to the remaining domains helps exploit more data correlation for better prediction efficiency. The prediction can be further coupled with data transforms to enhance the performance. For such composite schemes, a combination of motion compensated temporal filtering (MCTF) and wavelet transform is proposed. In residual coding, techniques employed include Context-based adaptive arithmetic coding (CBAAC) and Context-based Golomb-Rice coding (CBGRC). Based on this framework, various lossless compression systems have been developed subject to different types of image data. The systems presented in chapter 3 to chapter 5 are tailored to video, medical images and hyperspectral images, respectively. Experiments on these systems have been conducted to demonstrate the compression efficiency and the results are very promising. For video source, with the help of an adaptive MCTF scheme and supplementary spatial predictions, the proposed system can yield a compression ratio ranges from 2 to 4. For single or volumetric medical image data, a combination of adaptive least square prediction, adaptive error feedback and context based coding leads to an efficient prediction scheme achieving a pronounced compression ratio ranging from 4 to 8. For hyperspectral images, which exhibit strong data correlation along the spectrum, a two-stage prediction scheme followed by a first order entropy coder gives rise to a significant compression ratio up to 4. Comparisons with existing state-of-the-art compression algorithms such as JPEG-LS, JPEG2000, and I-CALIC are also performed and the performance edges of the proposed systems are undoubtedly verified. Besides the algorithm developments, the system implementation issues are also investigated in this dissertation. Based on the hyperspectral image compression scheme presented in chapter 5, an efficient embedded system implementation on an ARM + FPGA prototyping platform is presented in chapter 6. Following the principle of HW/SW codesign, the system employs a dedicated hardware accelerator realized in an FPGA to implement the most computation intensive module, i.e., the prediction module, of the compression system. The remaining of the system is coded in software for the flexibility. With the application of various optimizing techniques, the system shows a 21 times speed up compared to a purely software implementation. The hardware accelerator design is further fabricated to a chip using TSMC 0.18um 1P6M CMOS technology. The maximum throughput is as high as 16.5Mpixel/sec when working at 40MHz. The core size of the chip design is 5.38 mm2 and the measured power consumption at 40MHz is only 169 mW. |

URI: | http://hdl.handle.net/11455/7322 |

其他識別: | U0005-3105201115481100 |

Appears in Collections: | 電機工程學系所 |

Show full item record

TAIR Related Article

#### Google Scholar^{TM}

Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.