Please use this identifier to cite or link to this item:
標題: 應用於低溫多晶矽平面顯示器之數位類比轉換器
Digital Analog Converter for Low-Temperature Polycrystalline Silicon Flat Panel Displays
作者: 林致穎
Lin, Chih-Ying
關鍵字: Parallel-Connection Resistor;並聯電阻;Digital-to-Analog Converter;Current Mirror;Analog Buffer;數位類比轉換器;電流鏡;類比緩衝器
出版社: 電機工程學系所
引用: [1] 徐同璇,“應用於主動式液晶顯示器之低偏移電壓緩衝放大器”, 國立中興大學電機工程學系碩士論文, 民國95年7月. [2] 張廷宇,“低溫多晶矽薄膜電晶體液晶顯示器週邊電路設計”, 國立中興大學電機工程學系碩士論文, 民國95年7月. [3] David A. Johns, Ken Martin, “Analog Integrated Circuit Design”, John Wiley & Sons, 1997. [4] Allen, 羅正忠,“CMOS類比電路設計第二版”, 台北圖書,民國94年5月. [5] “Low Temperature p-Si (LTPS) TFTs”, DisplaySearch, May ΄99. [6] 戴亞翔,“TFT-LCD 面板的驅動與設計”, 五南圖書, 民國95年4月. [7] Gross, Jr. et al., “Resistor String With Equal Resistance Resistor”, United States Patent, No. 5,534,862, 1996. [8] Bruce, J.W., “Nyquist Rate Digital-to-Analog Converter Architectures”, IEEE Potentials, Vol. 20, pp. 24-28, 2001. [9] Andre Abrial, Jacky Bouvier, Jean-Michel Fournier, Patrice Senn, and Michel Veillard, “A 27-MHz Digital-to-Analog Video Processor”, IEEE Journal of Solid-State Circuits, Vol. 23, No. 6, pp. 1358-1369, 1988. [10] Lei Wang, Yasunori Fukatsu, and Kenzo Watanabe, “A CMOS R-2R Ladder Digital-to-Analog Converter and Its Characterization”, IEEE Instrumentation and Measurement Technology Conference, pp. 1026-1031, 2001. [11] S. Seki, T. Saito, H. I. Fujishiro, S. Nishi, and Y. Sano, “An 8Bit 1GHz DAC using 0.5u Inverted HEMTs”, IEEE International Electron Device Meeting, pp. 770-773, 1988. [12] Won-Chul Shin, Seung-Woo Lee, Hoon-Ju Chung and Chul-Hi Han“ Design of A 1’*1’, 512*512 Poly-Si TFT-LCD with Integrated 8-bit Parallel-Serial Digital Data Driver,” Journal of Information Display, Vol.2, No.2, pp. 1-6, June 2001. [13] B. D. Choi, H. Jang, O. K. Kwon, H. G. Kim, and M. J. Soh, “Design of Poly-Si TFT-LCD Panel with Integrated Driver Circuits for an HDTV/XGA Projection System”, IEEE Transactions on Consumer Electronics, Vol. 46, pp. 95-104, 2000. [14] Edwards, M. J., “Poly-Si Drive Circuits for Liquid Crystal Displays”, IEE Colloquium on Poly-Si Devices and Applications, pp. 109- 112, 1993. [15] C. S. Tan, W. T. Sun, S. H. Lu, C. H. Kuo, S. H. Yeh, I. T. Chang, C. C. Chen, Jargon Lee, and C. S. Yang, “A Fully Integrated Poly-Si TFT- LCD Adopting a Novel 6-Bit Source Driver and a Novel DC-DC Converter Circuit”, SID Tech. Dig., pp. 1456-1459, 2004. [16] M. D. Ker, C. K. Deng, and J. L. Huang, “On-Panel Design Technique of Threshold Voltage Compensation for Output Buffer in LTPS Technology”, SID Tech. Dig., pp. 288-291, 2005. [17] S. H. Jung, J. H. Park, C. W. Han, and M. K. Han, “New Source Follower Type Analog Buffers Using Poly-Si TFTs for Active Matrix Displays”, SID Tech. Dig., pp. 1452-1455, 2004. [18] Y. S. Yoo, J. Y. Choi, H. S. Shim, and O. K. Kwon, “A High Accurate Analog Buffer Circuit using Low Temperature Poly-Si TFT”, SID Tech. Dig., pp. 1460-1463, 2004. [19] C. C. Pai, and Y. H. Tai, “A New Analogue Buffer Using Poly-Si TFTs with Deviation Less Dependent on the Gray Level for Active Matrix Displays”, SID Tech. Dig., pp. 438-441, 2005. [20] H. J. Chung, S. W. Lee, and C. H. Han, “Poly-Si TFT push-pull analogue buffer for integrated data drivers of poly-Si TFT-LCDs”, IEEE Electronics Letters, Vol. 37, No. 17, pp. 1093-1095, 2001. [21] Y. H. Tai, C. C. Pai, B. T. Chen, and H. C. Cheng, “A Source-Follower Type Analog Buffer Using Poly-Si TFTs With Large Design Windows”, IEEE Electron Device Letters, Vol. 26, No. 11, pp. 811-813, 2005. [22] C. D. Yoo, J. Kim, and K. L. Lee, “Threshold Voltage and Mobility Mismatch Compensated Analogue Buffer for Driver-Integrated Poly-Si TFT LCDs”, IEEE Electronics Letters, Vol. 41, No. 2, pp. 65-66, 2005.

“System on panel (SOP)” products, which integrated peripheral circuits on glass, have been developed by using low-temperature polycrystalline silicon (LTPS) technology. It may eliminate control ICs and driver ICs, reduce the cost of LCD modules, and enhance reliability of products. Among the peripheral circuits, digital-to-analog converters (DACs) and output buffers are important to performance of LCDs because they transform digital signals into analog voltages for controlling gray levels of pixels.
First, we represent a novel 8-bit switched-resistor DAC (SR-DAC) based on LTPS technology for high-resolution TFT-LCDs. Reduced chip area and power consumption have been achieved by the voltage division principle and fast switching parallel connection resistors. The measurement results of the rising time and the falling time with 6-V power are 1.16 and 1.22 μsec. The maximum DNL and INL are about 0.3 and 0.6 LSB.
Second, a novel complementary current mirror (CCM) type analog buffer is presented for the integrated data drivers. The proposed analog buffer makes use of a p-type and an n-type current-mirrors to amplify the voltage and to achieve large voltage swing. The proposed buffer does not need capacitors and external control signals and features compact size. It has a good linearity from 1-9 V of input voltages with a 10-V power. The offset voltages are within 65.1 mV in middle gray levels.
The developed SR-DAC and analog buffer have potential to be applied for SOP products fabricated by LTPS technology.
其他識別: U0005-1107200720123500
Appears in Collections:電機工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.