Please use this identifier to cite or link to this item:
標題: 有效的界線容積於全域照度下之應用
作者: 王宗銘 
關鍵字: 可調式界線容積;橢圓拋物面體;實體角取樣;蒙地卡羅應用
出版社: 國立中興大學工學院;Airiti Press Inc.
Project: 興大工程學刊, Volume 15, Issue 2, Page(s) 77-88.
Bounding volumes are usually employed to accelerate computing for complex geometries in many graphics logarithms. In this paper, we present a technique to derive a tunable bounding volume for an elliptic paraboloid, given a parmeter related to the tightness. Each bounding volume thus developed is sufficiently tight to the original elliptic parabolid under a user’s control. This turable feature helps us selecting the most suitable bounding volume in Monte Carlo applications. It also contributes to achieve a balance between the computing efficiency and inherent overheads for bounding volumes. We implemented our technique in Monte Carlo applications including Monte Carlo direct lighting and Monte Carlo path tracing, where an elliptical paraboloid is considered as a luminaries for direct illumination and global illumination calculations. Experimental results verify the effectiveness of our technique, both in terms of more visually plausible appearance and faster rendering time.

在計算機圖學演算法中,經常運用界線容積(bounding volumes)來加速複雜幾何形體的計算。本文提出一個技巧來求取橢圓拋物面體的可調式界線容積。我們所提出的技巧允許使用者輸入參數來控制界線容積與實際物體的緊密度。每個產生的界線容積不僅具有最小的體積,也能符合使用者對緊密度的需求。這個可調式的特性不僅便利我們的在蒙地卡羅應用中選取最適合的界線容積,也達成在計算效率與界線容積衍生的額外代價兩者間求得平衡。我們將此技巧應用於蒙地卡羅直接照明和光線追蹤等成圖演算法上。無論在視覺效果或成圖時間上,實驗結果都證實我們的方法確實成效優異。
ISSN: 1017-4397
Appears in Collections:第15卷 第2期

Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.