Please use this identifier to cite or link to this item:
標題: 使用最大-最小螞蟻系統於高運量捷運省能之閉塞區間設計
Block-Layout Design Using MAX-MIN Ant System for Saving Energy on Mass Rapid Transit System
作者: 陳孟傑
Chen, Meng-Chieh
關鍵字: rapid transit system;捷運系統;fixed-block signaling system;energy consumption;Max-Min Ant System;固定閉塞區間號誌系統;耗能;最大-最小螞蟻系統
出版社: 電機工程學系所
引用: [1] H.H. Hoang et al, “Reducing Energy Consumption through Trajectory Optimization for a Metro Network,” IEEE Transactions on Automatic Control, Vol. 20, No. 5, pp. 590-595, October 1975. [2] B. Szabados and U. Schaible, “Peak Power Bi-directional Transfer from High Speed Flywheel to Electrical Regulated Bus Voltage System: A Practical Proposal for Vehicular Technology,” IEEE Transactions on Energy Conversion, Vol. 13, No. 1, pp. 34-41, March 1998. [3] S.P. Gordon and D.G. Lehrer, “Coordinated Train Control and Energy Management Control Strategies,” Proceedings of the 1998 ASME/IEEE Joint Railroad Conference, pp. 165-176, April 1998. [4] L.A.M.V. Dongen and J.H. Schuit, “Energy-Efficient Driving Patterns in Electric Railway Traction,” International Conference on Main Line Railway Electrification, pp. 154-158, September 1989. [5] S.N. Talukdar and R.L. Koo, “Multiobjective Trajectory Optimization for Electric Train,” IEEE Transactions on Automatic Control, Vol. 24, No. 6, pp. 888-893, December 1979. [6] C.S. Chang and S.S. Sim, “Optimisaing Train Movements through Coast Control Using Genetic Algorithms,” IEE Proceedings- Electric Power Applications, Vol. 144, No. 1, January 1997. [7] H.S. Hwang, “Control Strategy for Optimal Compromise between Trip Time and Energy Consumption in a High-Speed Railway,” IEEE Transactions on Systems, Man, and Cybernetics- Part A: Systems and Humans, Vol. 28, No. 6, pp. 791-802, November 1998. [8] C.S. Chang et al., “Pareto-Optimal Set Based Multiobjective Tuning of Fuzzy Automatic Train Operation for Mass Transit System,” IEE Proceedings- Electric Power Applications, Vol. 146, No. 5, pp.577-583, September 1999. [9] E. Khmelnitsky, “On an Optimal Control Problem of Train Operation,” IEEE Transactions on Automatic Control, Vol. 45, No. 7, pp. 1257-1266, July 2000. [10] K.K. Wong and T.K. Ho, “Coast Control for Mass Rapid Transit Railways with Searching Methods,” IEE Proceedings- Electric Power Applications, Vol. 151, No. 3, pp. 365-376, May 2004. [11] D.C. Gill and C.J. Goodman, “Computer-based Optimisation Techniques for Mass Transit Railway Signalling Design,” IEE Proceedings-B, Vol. 139, No. 3, pp. 261-275, May 1992. [12] C.S. Chang and D. Du, “Improved Optimisation Method Using Genetic Algorithms for Mass Transit Signalling Block-Layout Design,” IEE Proceedings- Electric Power Applications, Vol. 145, No. 3, pp. 266-272, May 1998. [13] C.S. Chang and D. Du, “Further improvement of Optimisation Method for Mass Transit Signalling Block-Layout Design Using Differential Evolution,” IEE Proceedings- Electric Power Applications, Vol. 146, No. 5, pp. 559-569, September 1999. [14] B.R. Ke and N. Chen, “Signalling Block-Layout and Strategy of Train Operation for Saving Energy in Mass Rapid Transit Systems,” IEE Proceedings- Electric Power Applications, Vol. 152, No. 2, pp. 129-140, April 2005. [15] M. Dorigo and L.M. Gambardella, “Ant Colony System: A Cooperative Leaning Approach to the Traveling Salesman Problem,” IEEE Transactions on Evolutionary Computation, Vol. 1, No. 1, pp. 53-66, April 1997. [16] V. Maniezzo and A. Colorni, “The Ant System Applied to the Quadratic Assignment Problem,” IEEE Transactions on Knowledge and Data Engineering, Vol. 11, No. 5, pp. 769-778, October 1999. [17] D. Merkle, M. Middendorf and H. Schmeck, “Ant Colony Optimization for Resource-Constrained Project Scheduling,” IEEE Transactions on Evolutionary Computation, Vol. 6, No. 4, pp. 333-346, August 2002. [18] M. Dorigo, M. Birattari and T. Stutzle, “Ant Colony Optimization,” IEEE Computation Intelligence Magazine, Vol. 1, No. 4, pp. 28-39, November 2006. [19] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant System: Optimization by a Colony of Cooperating Agents,” IEEE Transactions on Systems, Man, and Cybernetics- Part B: Cybernetics, Vol. 26, No. 1, pp. 29-41, February 1996. [20] T. Stutzle and H. Hoos, “Max-Min Ant System and Local Search for the Traveling Salesman Problem,” Proceedings of 1997 IEEE International Conference on Evolutionary Computation, pp. 309-314, 1997. [21] W.J. Davis, “The Tractive Resistance of Electric Locomotive and Cars,” General Electric Review, Vol. XXIX, No. 10, pp. 685-707, October 1926. [22] M. Dorigo and G.D. Caro, “Ant Colony Optimization: A New Meta-Heuristic,” Proceedings of the 1999 Congress on Evolutionary Computation, Vol. 2, pp. 1470-1477, July 1999. [23] M. Dorigo and T. Stutzle, “Ant Colony Optimization”, MIT press, Massachusetts, 2004. [24] O.S. Nock et al., “Railway Signalling: A Treatiose on the Recent Practice of British Railways,” A & C Black Limited, UK, 1980. [25] O.E. Teague et al., “Automatic Train Control in Rail Rapid Transit,” United States Congress, Office of Technology Assessment, NTIS order #PB-254738, May 1976. [26] B.R. Ke, “Signaling System for Saving Energy on Mass Rapid Transit Systems,” Ph.D. Dissertation, National Taiwan University of Science and Technology, Taiwan, ROC., 2006. [27] 翁聿復,「高運量捷運系統電聯車號誌設備功能與操作概論」,捷運技術,第十三期,民國八十四年三月二十三日。 [28] 鄧淇,「行車控制中心簡介」,捷運電聯車號誌系統研習班講義,車輛工業人才培訓計畫,經濟部工業局,民國八十三年十月五日至七日。 [29] 段英明,「捷運號誌系統概論」,捷運電聯車號誌系統研習班講義,車輛工業人才培訓計畫,經濟部工業局,民國八十三年十月五日至七日。 [30] 陳鼎漢,「閉塞號誌設計理念」,捷運技術,第五期,民國八十年八月二十三日。 [31] 曾乙申,「台北捷運工程淡水─新店線供電系統之負載潮流與諧波分析」,國立台灣工業技術學院電機研究所博士論文,民國八十四年七月。 [32] 陳智淵,「台北捷運系統列車運行動態模擬」,國立台灣科技大學碩士論文,民國九十一年五月。 [33] 許臨國,「列車行駛之阻力探討」,捷運技術,第五期,民國八十年八月二十三日。 [34] 曾乙申,「列車運行模擬」,課程講義,民國91年。

This thesis presents a method of block-layout design between successive stations for saving energy under the framework of the fixed-block signaling system and the equi-block principle on mass rapid transit systems. The main factors that affect the energy consumption of train operation in the journey are the alignment gradient and train-speed trajectory. At the same time, the block-layout and speed code need to be determined under the restrictions of average speed and headway for service quality.
First, the problem of minimizing energy consumption between successive stations is represented to the combinatorial optimization problem in this thesis. Second, the train-speed trajectory for saving energy is optimized by the max-min ant system of ant colony optimization algorithms. Third, the block-layout is designed in accordance with the shortest block length under the equi-block principle. Finally, the feasibility and benefit are verified via simulations, analyses and discussions.
其他識別: U0005-1608200721190200
Appears in Collections:電機工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.