Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/7567
DC FieldValueLanguage
dc.contributor黃育賢zh_TW
dc.contributor林維亮zh_TW
dc.contributor.advisor張振豪zh_TW
dc.contributor.author林宗煜zh_TW
dc.contributor.authorLin, Zong-Yuien_US
dc.contributor.other中興大學zh_TW
dc.date2008zh_TW
dc.date.accessioned2014-06-06T06:40:13Z-
dc.date.available2014-06-06T06:40:13Z-
dc.identifierU0005-2108200711323100zh_TW
dc.identifier.citation[1] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd Ed., Kluwer Academic Publishers, 2001. [2] Marty Brown, Power Supply Cookbook, 2nd Ed, Newnes, 2001. [3] Maxim, “Regulator Topologies for Battery-Powered Systems,” Application Note 660, Jan. 2001. [4] G. A. Rincon-Mora and P. E. Allen, “A low-voltage, low quiescent current, low drop-out regulator,” IEEE J. Solid-State Circuits, vol.33, pp.36-44, Jan. 1998. [5] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design, Second Ed., New York: Wiley & Sons, 1995. [6] H. W. Whittington, B. W. Flynn, and D. E. Macpherson, Switched Mode Power Supply: design and construction 2nd edition., Research Sutdues Press Ltd., 1997. [7] A. I. Pressman, Switching Power Supply Design, Second Ed., McGraw-Hill, New York, 1999. [8] W.-L. Huang, A High-Efficiency CMOS DC-DC Switching Voltage Regulator for voltage Applications, M.S. thesis, National Cheng-Kung University, July 2004. [9] K. Kester and B. Erisman, “Switching Regulators,” Analog Devices Technical Library on Power Management, 1999. [10] C. F. Lee and P. K. T. Mok, “A monolithic current-mode DC-DC converter with on-chip current-sensing technique,” IEEE J. Solid-State Circuits, vol.39, pp.3-14, Jan. 2004. [11] C. Y. Leung, P.K.T. Mok, and K. N. Leung, “A 1-V integrated current-mode boost converter in standard 3.3/5-V CMOS technologies,” IEEE Journal of Solid-State Circuits, vol.40, pp.2265-2274, Nov. 2005. [12] P. L. Miribel-Catala, M. Puig-Vidal, J. S. Marti, P. Goyhenetche, and X. Q. Nguyen, “An integrated digital PFM DC-DC boost converter for a power management application: a RGB backlight LED system driver,” IEEE Industrial Electronics Society, vol.1, pp.37-42, Nov. 2002. [13] “DC-DC Converter Tutorial,” Maxim Semiconductor Application Note, Maxim Inc., 2000. [14] R. Erickson and D. Maksimovic, “High efficiency DC-DC converters for battery-operated systems with energy management,” Worldwide Wireless Communications, Annual Reviews on Telecommunications, 1995. [15] B. Arbetter, R. Erickson, and D. Maksimovic, “DC-DC converter design for battery-operated system,” IEEE Power Electronics Specialist Conf., vol.1, pp.103-109, 1995. [16] 江定達,“可適應性直流對直流升壓轉換器,”國立中興大學碩士論文,中華民國九十五年六月。 [17] A. Barrado, R. Vazquez, A. Lazaro, J. Pleite, and E. Olias, "Fast transient response with combined linear-non-linear control applied to buck converters," IEEE Power Electronics Specialists Conf., vol.4, pp.1587-1592, June 2002. [18] A. Barrado, R. Vazquez, A. Lazaro, J. Pleite, E. Olias, and J. Pleite, "Linear-non-linear control applied to buck converters to get fast transient response," in Proc. IEEE Int. Symp. Industrial Electronics, vol.3, pp.999-1003, May 2002. [19] A. Barrado, A. Lazaro, J. Pleite, R. Vazquez, J. Vazquez, and E. Olias, “Linear-non-linear control (LnLc) for DC-DC buck converters: stability and transient response analysis,” Nineteenth Annual IEEE Applied Power Electronics Conf. Exposition (APEC ''04), vol.2, pp.1329-1335, 2004. [20] B. Razavi, Design of Analog CMOS Integrated Circuits, Mc Graw Hill, June 2002. [21] J. Sheng, Z. Chen, and B. Shi, “A 1V supply area effective CMOS bandgap reference,” Proceedings of 5th International Conference on ASIC, vol.1, pp.619-622, Oct. 2003. [22] 黃致喨,“適用於電池操作裝置之低電壓零靜態電流脈波頻率調變升壓式轉換器,”國立中興大學碩士論文,中華民國九十五年七月。zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/7567-
dc.description.abstract本論文之內容主要研究直流對直流升壓轉換器電路設計,控制技術有脈波寬度調變(PWM)與脈波頻率調變(PFM),其各有優缺點,在這些優缺點的特性下,我們將針對PFM控制技術去做改善。低漣波輸出與快速暫態響應將是文中探討的目標。 PFM控制方法的優點就是在輕載下效率比較高,缺點就是越到重載則效率會下降,另外輸出漣波太大也是不好的地方,因此我們採用了可適應性電流限制電路能有效改善漣波輸出。影響輸出漣波太大的一個重要因素就是,流入輸出濾波電容的電流太大導致漣波很大,而負載並不需要這麼多,多餘的能量只能慢慢釋放。只要流入輸出濾波電容的電流能夠足夠給負載使用就好了,這樣的結果造就了在小負載下,流入輸出濾波電容的電流大幅降低,漣波也跟著降低。但是此控制技術卻造成了暫態響應的問題出現,因此我們增加了ㄧ個改善暫態的電路來解決這個問題。 在設計上,我們使用台積電CMOS 0.35um 2P4M 5V製程實現,晶片面積約1.4*1.0mm2,使用可適應性電流限制電路,隨著不同的負載電流而提供適當的感應電流值,在負載電流10mA下,輸出漣波電壓為8mV,比傳統PFM的漣波降低了70%左右。再者,藉著使用一暫態改善電路,可使暫態響應在輸出電壓容許的 內,將反應時間從90us降為0us。而整體系統能量轉換效率最高可達82%。zh_TW
dc.description.abstractThis thesis mainly studies the circuit design of the DC-DC boost converter. The mainstream control methods are pulse width modulation(PWM) and pulse frequency modulation(PFM). Both of them have merits and drawbacks. In this thesis, we will aim at improving the PFM control method. Low ripple and fast transition response will be the goal. The merit of the PFM control method is that the efficiency is quite high under light load. The shortcomings are that the efficiency will be reduced with the increasing load, and the output ripple is too big. Therefore, we utilize an adaptive current-limited circuit to improve ripple. An important factor which influences the output ripple is that a large current flows into the output filter capacitor to cause the ripple to be very big. However, when the load does not need too much current, the unnecessary energy can only release slowly. It will be good if the current flows into the output filter capacitor is just enough for load. This method accomplishes that the current flow into output filter capacitor will be reduced greatly under light load, and so as ripple. But this control method causes transient response time, and then we use another circuit to solve this problem. In this design, we use TSMC 0.35um 2P4M 5V CMOS technology. The chip area is about 1.4*1.0mm2. The adaptive current-limited circuit is used to act according to the different load automatically. The output ripple is 8mV at 10mA loading current, which is reduced about 70%compared with the conventional PFM. By using the transient improving circuit, we can reduce transient response time from 90us to 0us at variations of the output voltage. The system efficiency can be up to 82%.en_US
dc.description.tableofcontents誌謝 I 中文摘要 II Abstract III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 背景簡介 1 1.2 研究動機 2 1.3 論文架構 2 第二章 直流-直流電壓轉換器概論 3 2.1 低壓降線性穩壓器(LDO) 3 2.2 切換式穩壓器(Switch Regulator) 4 2.2.1 升壓轉換器 4 2.2.2 降壓轉換器 5 2.2.3 升降壓轉換器 6 2.3 升壓轉換器導通模式 7 2.3.1 連續導通模式 7 2.3.2 連續與不連續導通之邊界 8 2.3.3 不連續導通模式 9 第三章 切換式轉換器規格與控制方法的比較 11 3.1 切換式轉換器規格 11 3.1.1 效率(Efficiency) 11 3.1.2 線性穩壓(Line Regulation) 13 3.1.3 負載穩壓(Load Regulation) 13 3.1.4 暫態響應(Transient Response) 14 3.1.5 輸出電壓漣波(Ripple) 15 3.2 控制電路分類 16 3.2.1 電壓模式PWM 17 3.2.2 電流模式PWM 18 3.2.3 電壓模式PFM 19 3.2.4限流式(Current-Limited)PFM 20 3.3 控制方法的比較 21 第四章 電路分析與模擬 23 4.1系統架構分析 23 4.2誤差放大器 25 4.3比較器 27 4.4偏壓電路 28 4.5能隙參考電壓 29 4.6電流感測電路 32 4.7關閉時間控制電路 34 4.8電壓移位器 36 4.9暫態響應改善電路 37 第五章 系統模擬、佈局與量測 38 5.1 預計規格表 38 5.2 系統模擬 39 5.3 晶片佈局 48 5.4 晶片量測 49 第六章 結論與未來展望 53 參考文獻 54zh_TW
dc.language.isoen_USzh_TW
dc.publisher電機工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2108200711323100en_US
dc.subject脈波寬度調變zh_TW
dc.subjectPWMen_US
dc.subject脈波頻率調變zh_TW
dc.subjectPFMen_US
dc.title低漣波脈波頻率調變直流轉直流升壓轉換器的設計與實現zh_TW
dc.titleDesign and Implementation of Low Ripple PFM Step-up DC/DC Converteren_US
dc.typeThesis and Dissertationzh_TW
item.languageiso639-1en_US-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:電機工程學系所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.