Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorWu, Sheng-Dongen_US
dc.identifier.citation[1] R. G. Gallager, “Low density parity check codes,” IRE Trans. Inform. Theory, vol. IT-8, pp. 21-28, Jan. 1962. [2] D. J. C. MacKay, “Near Shannon limit performance of low density parity check codes,” Electronics Letters, vol. 33, pp. 457-458, Mar. 1997. [3] T. J. Richardson and R. L. Urbanke, “Efficient encoding of low-density parity-check codes,” IEEE Trans. Inform. Theory, vol. 47, pp. 638-656, Feb. 2001. [4] F. R. Kschischang and B. J. Frey, and H. -A. Loeliger, “Factor graphs and the sum-product algorithm,” IEEE Trans. on Inform. Theory, vol. 47, pp. 498-519, Feb. 2001. [5] S. Myung, K. Yang, and J. Kim, “Quasi-cyclic LDPC codes for fast encoding,” IEEE Trans. Inform. Theory, vol. 51, pp. 2894-2901, Aug. 2005. [6] E. Eleftheriou and S. Olcer, “Low-density parity-check codes for multilevel modulation,” in Proc. IEEE Int. Symp. Information Theory (ISIT2002), pp. 442, July 2002. [7] H. Zhong and T. Zhang, “Block-LDPC: a practical LDPC coding system design approach,” IEEE Trans. Circuits and Systems-part I, vol. 52, pp. 766-775, April 2005. [8] S.-M. Kim and K. K. Parhi, “Overlapped decoding for a class of quasi-cyclic LDPC codes,” IEEE Workshop Signal Processing Systems, pp. 113-117, 2004. [9] Z. Cui and Z. Wang, “Area-efficient parallel decoder architecture for high rate QC-LDPC codes,” in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS’06), pp. 5107-5110, May 2006. [10] S. L. Howard, V. C. Gaudet, C. Schlegel, and C. Schlegel, “Soft-bit decoding of regular low-density parity-check codes,” IEEE Trans. Circuits and Systems-part II, vol. 52, pp. 646-650, Oct. 2005. [11] M.-Y. Park, W.-C. Lee, J.-H. Kwak, C.-H. Cho, and H.-M. Park, “A demapping method using the pilots in COFDM system,” IEEE Trans. Consumer Electronics, vol. 44, pp. 1150-1153, Aug. 1998. [12] 施信毓, “VLSI Designs of LDPC Codec for IEEE 802.16e System,” 國立台灣大學碩士論文,中華民國九十五年六月。 [13] 林凱立, “High-Throughput Low-Density Parity-Check Code Decoder Designs,” 國立交通大學碩士論文,中華民國九十四年七月。zh_TW
dc.description.abstract下一代無線通信系統的目標是更高的資料傳送速率和增加通信覆蓋區域面積。但是,由於系統耗用功率及法規上的限制,我們無法以增加信號射頻傳送功率來達到這個目標。「前饋式錯誤更正技術」提供了達到這個目標的另一途徑,而先進的「前饋式錯誤更正碼」,正是下一代無線網路系統的關鍵驅動技術。 目前有多項先進的標準將低密度同位元檢查碼納入考慮,如下一代衛星通訊的DVB-S2標準已採用編碼字長度為64800位元的低密度同位元檢查碼,藉由前饋式錯誤更正碼的改進,可增加30%的資料傳輸量。其他如無線網路標準IEEE802.11n之編碼率由1/2到5/6,可對資料提供不同程度的保護。 本論文提出一種結合低密度同位元檢查碼解碼設計方法,我們稱作改良式的區塊型同位元檢查碼(Modified Block-Type LDPC),做一個系統架構的實現。B-LDPC是一種QC-LDPC的特殊情形,由於結構上的簡化,他可以做有效的編碼。我們建立一個非正規的同位元檢查碼的排列方法,來得到一種節省面積的設計,以及好的錯誤更正能力,以及可實現的硬體架構。Modified B-LDPC解碼利用了min-sum algorithm(MSA)和利用位元節點單元(BNU)及檢查節點單元(CNU)來作運算。不同的區塊矩陣的大小情況之下,Modified B-LDPC可以提供較高的throughput但部會造成太多的效能的降低。zh_TW
dc.description.abstractThe target of the next generation wireless communication system is to transmit higher data rate and have a larger coverage area. However, radio transmission power needs to be kept to a minimum due to regulation and system power consumption. Thus, we can not achieve the target problem by increasing transmission power. Forward-error- correction (FEC) system can be employed to reach this target. The advanced FEC is the key technique in the next generation wireless communication system. There are many up-to-date standards that take LDPC into consideration. For example, the next generation satellite communication DVB-S2 standard uses 64800-bit LDPC codes. By improving FEC, the data transmission throughput can get 30% up. The coderates of wireless network 802.11n standard are 1/2 to 5/6 that can support different levels of data protection. In the thesis, a combined Low-Density Parity-Check (LDPC) code decoding design method, called modified Block-Type LDPC (B-LDPC), for realistic LDPC coding system architectures is presented. The B-LDPC code, which is a special class of quasi-cyclic LDPC (QC-LDPC), has an efficient encoding algorithm owing to the simple structure of their parity-check matrices. A proposed distribution of irregular parity-check matrix for the modified B-LDPC is developed so that we can obtain an area-efficient decoder design, good error correction performance, and achievable architecture implementation. The modified B-LDPC code decoding utilizes the iterative min-sum algorithm (MSA) and its decoding architecture design employs the operations of bit node unit (BNU) and check node unit (CNU). Different block matrix sizes for parity-check matrix can be adopted so that the modified B-LDPC code decoding improves the throughput without obvious performance degradation.en_US
dc.description.tableofcontents誌謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1-1 緒論 1 1-2 研究背景與動機 1 1-3 研究方法 1 1-4 內容大綱 2 第二章 低密度同位元檢查碼介紹 3 2-1 低密度同位元檢查碼 4 2-2 LDPC編碼原理 5 2-2-1 傳統式編碼 5 2-2-2 下三角近似法 5 2-3 LDPC解碼原理 7 2-3-1 Iterative Decoding 7 2-3-2 sum-product algorithm [4] 7 2-4 min-sum algorithm (MSA) 13 第三章 Block-Type LDPC的高速率應用 15 3-1 Quasi-Cyclic LDPC Codes 15 3-2 Modified Block-Type LDPC Codes 17 3-3 模擬分析 19 3-3-1 Soft-Demapping 19 3-3-2 矩陣區塊大小模擬 22 3-3-3 碼率模擬 22 3-3-4 Word-length模擬 24 3-3-5 遞迴次數模擬 25 3-3-6 旋轉矩陣參數模擬 26 第四章 硬體設計與架構 28 4-1 主體架構設計 28 4-2 子架構設計 29 4-2-1 BNU架構設計 29 4-2-2 CNU架構設計 30 4-2-3 Connection 32 4-3 模擬結果與效能 42 第五章 結論 48 參考文獻 49zh_TW
dc.subjectLow-Density Parity-Check (LDPC)en_US
dc.subjecthardware architectureen_US
dc.titleArchitecture design of the Modified Block-Type Low-Density Parity-Check Codes Decoderen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:電機工程學系所
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.