Please use this identifier to cite or link to this item:
標題: 應用於IEEE 802.11a/b/g之消除突波非整數頻率合成器
A Fractional-N Frequency Synthesizer with a Spur-Eliminated Topology for IEEE 802.11 a/b/g Channels
作者: 陳銘斌
Chen, Ming-Bin
關鍵字: synthesizer;頻率合成器;spur;突波
出版社: 電機工程學系所
引用: [1] B. Razavi, “Design of Analog CMOS Integrated Circuits,” McGraw-Hill, 2000. [2] B. Razavi, “RF Microelectronics,” Prentice Hall, 1998. [3] B. Razavi, “Design of Integrated Circuits for Optical Communications,” McGraw- Hill, 2003. [4] F. Gardner, “Charge-Pump Phase-Lock Loops,” IEEE Trans. Communications, Vol. 28, pp. 1849-1858, Nov. 1980. [5] M. Van Paemel, “Analysis of a charge-pump PLL: a new model,” IEEE Trans. Communications, Vol.42, pp.2490-2498, July 1994. [6] M. Soyuer and R. G. Meyer, “Frequency limitations of a conventional phase-frequency detector,” IEEE J. Solid-State Circuits, Vol. 25, No.8, pp. 1019-1022, Aug. 1990. [7] H. O. Johansson, “A simple precharged CMOS phase frequency detector,” IEEE J. Solid-State Circuits, Vol. 33, No. 2, pp. 295-299, Feb. 1998. [8] M. Papamichail, D. Karadimas, K. Efstathiou, G. Papadopoulos, “Linear Range Extension of a Phase- Frequency-Detector with Saturated Output,” IEEE International Symposium on circuits and Systems, 2006. [9] C. T. Charles, D. J. Allstot, “A Calibrated Phase/Frequency Detector for Reference Spur Reduction in Charge-Pump PLLs,” IEEE Trans. Circuits and Systems—II: Express Briefs, vol. 53, no. 9, September 2006. [10] M. Mansuri, D. Liu and C. K. Ken Yang, “Fast frequency acquisition phase-frequency detectors for GSamples/s phase-locked loops”, IEEE J. Solid-State Circuits, Vol. 37, No.10, pp. 1331-1334, Oct. 2002. [11] S. O. Jeon, T. S. Cheung and W. Y. Choi, “Phase/frequency detectors for high-speed PLL applications”, Electronic Letters, Vol. 34, pp. 2120-2121, Oct. 1998. [12] H. Huh and Y. Koo, “Comparison Frequency Doubling and Charge Pump Matching Techniques for Dual-Band ΔΣ Fractional-N Frequency Synthesizer,” IEEE J. Solid-State Circuits, vol. 40, no. 11, November 2005. [13] B. Miller and R. J. Conley, “A Multiple Modulator Fractional Divider,” IEEE Trans. Instrumentation and Measurement, vol. 40, no. 3, June 1991. [14] S. E. Meninger, M. H. Perrott, “A 1-MHz Bandwidth 3.6-GHz 0.18-um CMOS Fractional-N Synthesizer Utilizing a Hybrid PFD/DAC Structure for Reduced Broadband Phase Noise,” IEEE J. Solid-State Circuits, vol. 41, no. 4, April 2006. [15] M. Kozak and I. Kale, “A Pipelined Noise Shaping Coder for Fractional-N Frequency Synthesis”, IEEE Trans. Instrumentation and Measurement, Vol. 50, No. 5, pp. 1154-1161, Oct., 2001. [16] A. M. Fahim and M. I. Elmasry, “A Wideband Sigma-Delta Phase-Locked-Loop Modulator for Wireless Application”, IEEE Trans. Circuits and Systems, Vol. 50, No. 5, pp. 53-62, Feb., 2003. [17] Y. T. Chang, “A GFSK Modulator by Using a Fractional-N Frequency Synthesizer”, M. S. thesis, National Taiwan University, 2003. [18] C. Y. Yang, J. W. Chen, Meng-Ting Tsai, “A High-Frequency Phase-Compensation Fraction-N Frequency Synthesizer,” IEEE International Symposium on Circuits and Systems, May. 2005. [19] E. Hegazi, J. Rael and A. Abidi, “The Designer’s Guide to High-Purity Oscillators,” Kluwer Academic Publishers, 2005. [20] R. L. Bunch and S. Raman, “Large-Signal Analysis of MOS Varactors in CMOS-Gm LC VCOs,” IEEE J. Solid-state Circuits, vol.38, No. 8, pp.1325-1332, Aug. 2003 [21] C. Y. Kuo, J. Y. Chang, S. I. Liu, “A Spur-Reduction Technique for a 5-GHz Frequency Synthesizer,” IEEE Trans. Circuits and Systems, vol. 53, no. 3, March 2006. [22] D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” in Proc. IEEE, vol. 54, pp. 329-330 , Feb. 1966. [23] J. J. Rael, A. A. Abidi, “Physical Processes of Phase Noise in Differential LC Oscillators,” IEEE Custom Integrated Circuits Conference, 2000. [24] T. H. Lee, A. Hajimiri, “Oscillator Phase Noise: A Tutorial,” IEEE J. Solid- State Circuits, vol. 35, pp. 326-336., March 2000. [25] B. Y. Sze and C.-L. Ho, VIA Technologies, Inc., Taipei, Taiwan, “A Low Phase Noise Quadrature LC VCO in CMOS Technology,” IEEE Radio Frequency Integrated Circuits Symposium, 2005. [26] E. Hegazi, H. Sjoland, A.A. Abidi, “A Filtering Technique to Lower LC Oscillator Phase Noise,” IEEE J. Solid-State Circuits, vol. 36, pp. 1921-1930, Dec. 2001. [27] C. M. Hung, B. A. Floyd, N. Park, and Kenneth K. O, “Fully integrated 5.35-GHz CMOS VCOs and prescalers,” IEEE Trans. Microwave Theory Tech., vol. 49, No.1, pp.17-22, Jan. 2000 [28] A. Hajimiri, T. H. Lee, “Design Issues in CMOS Differential LC Oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5, May 1999. [29] P. Andreani, “A1.8-GHz Monolithic CMOS VCO Tuned by an Inductive Varactor,” IEEE International Symposium on Circuits and Systems, vol. 4, Page(s):714 - 717, May 2001. [30] H. M. Hsu, “Improving the quality factor of broaden spiral inductor with arithmetic progression step width”, Microwave and Optical Technology Letters, vol.45, pp.118-120, April, 2005. [31] J. C. Costa, “Analysis Of Integrated Transformers and its Application to RFIC Design”, Ph. D. thesis, Universitat de Barcelona, 2002. [32] C. Y. Yang, M. T. Tsai, “High-Frequency Low-Noise Voltage-Controlled LC-Tank Oscillators Using a Tunable Inductor Technique,” IEICE Trans. Electronics, vol. E89-C no. 11 Norvember 2006. [33] A. Zolfaghari, A. Chen, B. Razavi, “A 2.4GHz 34mW CMOS Transceiver for Frequency-Hopping and Direct-Sequence Applications,” International Solid- State Circuits Conference, Feb. 2001. [34] N. J. Oh and S. G. Lee, “11-GHz CMOS Differential VCO with back-gate transformer feedback,” IEEE Microw. Wireless Compon. Lett. , vol. 15, no. 11, pp. 733–735, Nov. 2005. [35] T. C. Lee, K. J. Hsiao, “The Design and Analysis of a DLL-Based Frequency Synthesizer for UWB Application,” IEEE J. Solid-State Circuits, vol. 41, no. 6, June 2006. [36] Y. A. Eken and J. P. Uyemura, “A 5.9-GHz Voltage-Controlled Ring Oscillator in 0.18-um CMOS,” IEEE J. Solid-State Circuits, vol. 39, no. 1, Januray, 2004. [37] S. J. Lee, B. Kim and K. Lee, “A Novel High-Speed Ring Oscillator for Multiphase Clock Generator Using Negative Skewed Delay Scheme,” IEEE J. Solid-State Circuits, vol. 32, no. 2, February, 1997. [38] D. Y. Jeong, S.-H. Chai, W.-C Song and G.-H Cho, “CMOS Curent-Controlled Oscillators Using Multiple-Feedback Loop Architectures,” IEEE Int. Solid-Sate Circuit Conference Dig. Tech. Papers, 1997, pp386-387. [39] B. Razavi, “A Study of Phase Noise in CMOS Oscillator,” IEEE J. Solid-State Circuits, vol. 31, pp. 331-343, Mar, 1996. [40] J. S. Lee, M. S. Keel, S. I. Lim, S. Kim, “Charge pump with perfect current matching characteristics in phase-locked loop,” Electronics Letters, vol. 36, issue 23, pp. 1907-1908, Nov. 2000. [41] K. D. Feng, J. C. Lee, “Spark Current in Charge Pump of Phase Lock Loop,” IEEE CICC, pp. 199-202 , September 2005. [42] 翁文格, “A Spread-Spectrum Clock Generator Using a Phase-Compensation Fractional Phase-Locked Loop Technique,” M.S. thesis, National Chung Hsing University, 2006. [43] Ashok Swaminathan, Kevin J. Wang, Ian Galton,”A Wide-Bandwidth 2.4GHz ISM-Band Fractional-N PLL with Adaptive Phase-Noise Cancellation,” Inter- national Solid-State Circuits Conference, Page(s): 302~304, Feb. 2007. [44] Tai-Cheng Lee, Wei-Liang Lee, “A Spur Suppression Technique for Phase- Locked Frequency Synthesizers,” International Solid-State Circuits Conference, Page(s): 2432-2441, Feb. 2006. [45] Zhinian Shu, Ka Lok Lee, Bosco H. Leung, “A 2.4GHz Ring-Oscillator-Based CMOS Frequency Synthesizer With a Fractional Divider Dual-PLL Archi- tecture,” IEEE J. Solid-State Circuits, vol. 39, no. 3, pp. 452-462, March 2004. [46] F. Herzel, G. Fischer, H. Gustat, “An integrated CMOS RF synthesizer for 802.11a wireless LAN,” IEEE J. Solid-State Circuits, vol. 38, no. 10, pp. 1767-1770, Oct. 2003. [47] H. R. Rategh, H. Samavati, T. H. Lee, “A CMOS frequency synthesizer with an injection-locked frequency divider for a 5-GHz wireless LAN receiver,” IEEE J.l Solid-State Circuits, vol. 35, no. 5, pp. 780-787, May 2000. [48] Chun-Yi Kuo, Jung-Yu Chang, Shen-Iuan Liu, “A Spur-Reduction Technique for a 5-GHz Frequency Synthesizer,” IEEE Trans. Circuits and Systems, vol. 53, no. 3, pp. 526-533, March 2006. [49] Adrian Maxim, “A -86dBc Reference Spurs 1-5GHz 0.13um CMOS PLL Using a Dual-Path Sampled Loop Filter Architecture,” VLSI Circuits, Page(s):248-251, June 2005. [50] E. Temporit, G. Albasini, R. Castello, M. Colombo, “A700-kHz Bandwidth ΣΔ Fractional Synthesizer With Spurs Compensation and Linearization Techniques for WCDMA Applications,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1446-1454, Sept. 2004. [51] S. Pellerano, S. Levantino, C. Samori, A. L. Lacaita, “A Dual-Band Frequency Synthesizer for 802.11a/b/g with Fractional-Spur Averaging Technique,” Inter- national Solid-State Circuits Conference, vol. 1, Page(s): 104-105, Feb. 2005. [52] K. tajima, R. Hayashi, T. Takagi, “New Suppression Scheme of ΣΔ Fractional-N Spurs for PLL Synthesizers Using Analog Phase Detectors,” Microwave Symposium, pp.1183-1186, June 2005. [53] D. Butterfield, B. Sun, “Prediction of Fractional-N Spurs for UHF PLL Frequency Synthesizers,” Technologies for Wireless Applications, pp.29-34, Feb. 1999.
在本篇論文中,主要目的是利用一個多通道選擇的頻率合成器來實現本地振盪訊號,並能夠符合IEEE 802.11 a/b/g通道選擇的標準。並由於目前當下應用於頻率合成器之迴路濾波器大部分均使用電阻電容來組合而成,但在濾波器產生壓控振盪器控制電壓時會有漣波效應(ripple),而造成輸出頻率在頻譜產生參考頻率突波,會影響傳輸電路的效能表現。由此推論,去除電阻的濾波器可以有效抑制控制電壓的漣波效應,如此即可降低參考頻率突波,所以本論文以無電阻的鎖相迴路為基礎架構並做些許改進。另外在非整數的實現方面,相位補償技術是一種真實非整數除數鎖相迴路不同於一般常見的三角積分的平均式非整數鎖相迴路。此種技術能有效的改善量化誤差所造成的小數突波,此種技術需要週期相同但具有多個相位的訊號,而如何製造出補償相位是本技術的重點。
所以在頻率合成器的設計,可分為兩個主題。第一部分是使用可變電感架構的壓控振盪器來實現漣波抑制頻率合成器,其輸出頻率範圍4.6GHz~6.5GHz,並加上三角積分調變器進行調變,使其能夠達到除小數的功能,利用TSMC 0.18um標準CMOS製程做模擬,在1.8V電壓操作下功率消耗為75mW,晶片面積為1.4*1.4mm2。第二部分以上一個架構做基礎來實現消除突波技術,在此利用環型振盪器多相位輸出的優點,採取相位產生器和相位選擇器產生相位補償,以去除小數突波。而在環型振盪器中採用雙迴路的延遲迴路技術,用以提升振盪頻率,其輸出頻率範圍2.3GHz~2.6GHz,利用TSMC 0.18um標準CMOS製程做模擬,在1.8V電壓操作下功率消耗為65mW,晶片面積為0.815*0.66mm2。

In this thesis, the main purpose is to realize a LO signal with multi-channels frequency synthesizer for IEEE 802.11 a/b/g. On the instant, the loop filter in the frequency synthesizer is almost combined with the resisters and the capacitors. But, the VCO's controlled voltage is produced by loop filter and occurs the effect of ripple. This effect will generate reference spur in the spectra, and affect the performance of transmitter. For this reason, if we displace the resistor in the loop filter, it can suppress the effect of ripple in the VCO's controlled voltage. And then, the reference spur is decreased. So, we use the fundamental architecture of the no resistor frequency synthesizer to make some improvement in this thesis. In fractional part, phase-compensation fractional PLL is a different kind of true fractional PLL with averaging fractional PLL using D-S modulator architecture. This technique can minimum generating of quantization error which makes fractional spurs. The focus of the technique is how to generate the phase for compensation.
The work presents the frequency synthesizer based on PLLs. It divided into two parts of the work. The first one applies the inductive varactor voltage-controlled oscillator and delta-sigma modulator to realize a ripple-suppressed fractional-N frequency synthesizer. The output frequency range is from 4.6GHz to 6.5GHz. It is simulated by TSMC 0.18-um standard CMOS technology and power dissipation is about 75-mW under 1.8-V supply voltage. The chip area is 1.4*1.4mm2. The other one is to realized the spur-eliminated topology base on the last architecture of frequency synthesizer. Taking advantage of multi-phase generated by a ring oscillator, it adopts with a phase generator and a phase selector which generates phase compensation to reduce fractional spur. Because of the high speed operating, the ring oscillator is accepted with dual delayed loop technique. The output frequency range is from 2.3GHz to 2.6GHz. It is fabricated with a 0.18-um standard CMOS technology and power dissipation is about 65-mW under 1.8-V supply voltage. The chip area is 0.815*0.66mm2.
其他識別: U0005-2208200715012900
Appears in Collections:電機工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.