Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/7663
DC FieldValueLanguage
dc.contributor許恒銘zh_TW
dc.contributorHeng-Ming Hsuen_US
dc.contributor邱奕鵬zh_TW
dc.contributor吳俊德zh_TW
dc.contributorYih-Peng Chiouen_US
dc.contributorChun-Te Wuen_US
dc.contributor.advisor江衍忠zh_TW
dc.contributor.advisorYen-Chung Chiangen_US
dc.contributor.author黃俊傑zh_TW
dc.contributor.other中興大學zh_TW
dc.date2008zh_TW
dc.date.accessioned2014-06-06T06:40:19Z-
dc.date.available2014-06-06T06:40:19Z-
dc.identifierU0005-2308200716010500zh_TW
dc.identifier.citationReference [1] Behzad Razavi, “ RF MICROELECTRONICS” 1998 Prentice Hall PTR Upper Saddle River NJ 07458 [2] Thomas H. Lee “The DESIGN OF CMOS RADIO-FREQUENCY INTEGRATED CIRCUITS” Cambridge University Press 1998 [3] Reinhold Ludwig, and Pavel Bretchko, “RF Circuit Design Theory and Applications” 2000 Pearson Education International Upper Saddle River NJ 07458 [4] David M. Pozar, “Microwave Engineering Third Edition” 2005 John Wiley & Sons, Inc. [5] “Thermal Agitation of Electricity in Conductors,” Phys. Rev., v.32 July 1928, pp. 97-109 [6] “Thermal Agitation of Electric Charge in Conductors,” Phys. Rev., v32 July 1928, pp. 110-13 [7] Annalen der Physik, “Uber spontane Stromschwankungen in verschiedenen Electrizitatsleitern” [“On Spontaneous Current Fluctuations in Various Electrical Conductors”], v.57, 1918, pp.541-67 [8] H. T. Friis, “Noise Figure of Radio Receiver,” Proc. IRE, vol.32, pp.419-422, July 1944. [9] D. K. Shaeffer, and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS Low Noise Amplifer”, IEEE J. Soild-State Circuits, Vol. 32, No. 5, May 1997 [10] M. L. Edwards, and J. H. Sinksy, “A New Criteria for Linear 2-Port Stability Using a Single Geometrically Derived Parameter,” IEEE Trans. Microwave Theory and Techniques, vol. MTT-40, pp.2803-2811, December 1992 [11] Behzad Razavi, “Design of Analog CMOS Integrated Circuits” McGraw-Hill, Inc. International Edition 2001 [12] Francesco Gatta, Enrico Sacchi, Francesco Svelto, Paolo Vilmercati, and Rinaldo Castello, “A 2-dB Noise Figure 900-MHz Differential CMOS LNA,” IEEE Journal of solid-state circuits, vol36, NO.10, October 2001 [13] A. N. Karanicolas, “A 2.7-V 900-Mhz CMOS LNA and Mixer,” IEEE Journal of solid-state circuits, vol.31, December 1996 [14] B. Gilbert, “A precise four quadrant multiplier with sub-nanosecond response,” IEEE Journal of solid-state circuits, vol. SC-3, pp. 365–373, December 1968 [15] Marc Goldfarb, Ed Balboni, and John Cavey, “Even Harmonic Double -Balanced Active Mixer for Use in Direct Conversion Receivers,” IEEE Journal of solid-state circuits, vol.38, NO.10, October 2003 [16 ] B. Floyd, J. Metha, C. Gamero, and K. O, “A 900-MHz 0.8-_m CMOS low noise amplifier with 1.2-dB noise figure,” in Proc. Custom Integrated Circuits Conf., May 1999, pp. 661–664 [17] G. Gramegna, A. Magazzù, C. Sclafani, and M. Paparo, “Ultra-wide dynamic range 1.75-dB noise figure 900-MHz CMOS LNA,” in Proc. Int. Solid–State Circuits Conf., Feb. 2000, pp. 380–381 [18] Q. Huang, P. Orsatti, and F. Piazza, “GSM transceiver front-end circuits in 0.25-_m CMOS,” IEEE Journal of solid-state circuits, vol. 34, pp. 292–303,Mar. 1999 [19] K. Itoh et al., “A 2 GHz band even harmonic type direct conversion receiver for W-CDMA mobile terminal utilization,” in IEEE Int. Microwave Symp. MTT-S Dig., June 2000, pp. 1957–1960 [20] M. Shimozawa et al., “A passive-type even harmonic quadrature mixer using simple filter configuration for direct conversion receiver,” in IEEE Int. Microwave Symp. MTT-S Dig., June 2000, pp. 517–520 [21] K. Itoh et al., “Even harmonic type direct conversion receiver ICs for mobile handsets: Design challenges and solutions,” in IEEE Radio Frequency Integrated Circuits (RFIC) Symp. Dig. Papers, June 1999, pp.53–56 [22] T. Yamaji et al., “An I/Q active balanced harmonic mixer with IM2 cancellers and a 45 degree phase shifter,” IEEE Journal of solid-state circuits, vol.33, pp. 2240–2246, Dec. 1998 [23] CIC 訓練課程, “Design of RF CMOS IC,” 上課講義 [24] 中興大學 “射頻積體電路” 上課講義zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/7663-
dc.description.abstract所以本篇論文主要研究於IEEE 802.11 b/g的無線網路接收機部分,內容主要包含高頻積體電路理論、低雜訊放大器、混波器,使用 TSMC 0.18um 1P6M CMOS製程。低雜訊放大器部份透過電路技巧使用了current reuse的架構,可以在相同的功率消耗之下,能有比較好的效能,另外還設計了可以調整增益的機制在裡面,透過電壓或電流偏壓的控制,可以改變電路本身的特性。混波器採用了次諧波混波器(Subharmonic Mixer),這種架構應用於直接降頻架構可以減少DC Offset的現象,而且也設計了一個控制輸出電壓的機制,它不僅可以維持輸出電壓的準位,而且還可以透過它控制混波器的增益以及線性度。zh_TW
dc.description.abstractThis thesis major study in IEEE 802.11 b/g for WLNA Receiver . The contents include RF Fundamental, Low Noise Amplifier(LNA),and Mixer. We use the TSMC 0.18um 1P6M CMOS process to implement our circuit. The low noise amplifier uses the technology called current reuse. Since PMOS devices in scaled technology, the idea is to realize the input stage shunting an inductively degeneration NMOS stage with a PMOS one. In this way, due to the inherent current reuse, the performances can be improved using the same power consumption. Besides the current reuse, we utilize control gain to change current or voltage. Thus, it can change the circuit's performance. A active double-balance even harmonic mixer is introduced. This architecture can avoid the problem of DC Offset in direct conversion. It not only haves the control gain to keep the voltage of output circuit, but also can vary gain and linearity of the mixer.en_US
dc.description.tableofcontents目 錄 致謝.................................................i 中文摘要............................................ii 英文摘要...........................................iii 目錄...............................................iv 圖目錄............................................viii 表目錄............................................xiii 第一章 導論........................................1 1.1 研究動機............................................1 1.2 無線區域網路的通訊標準..............................1 1.3 論文架構............................................2 第二章 高頻積體電路原理............................3 2.1 S參數...............................................3 2.2 增益................................................6 2.3 雜訊................................................8 2.3.1 熱雜訊(thermal noise)........................8 2.3.2 射擊雜訊(Shot noise).........................8 2.3.3 閃耀雜訊(flicker noise)......................9 2.3.4 雜訊指數(Noise Figure)......................10 2.3.5 有損耗電路(Lossy Circuit)的雜訊因子...........11 2.3.6 串接級(Cascaded Stages)的雜訊因子.............12 2.4 線性度.............................................12 2.4.1 線性系統....................................12 2.4.2 非線性系統..................................13 2.4.3 諧波........................................13 2.4.4 1dB增益壓抑點(P1dB;1dB Gain Compression ).....14 2.4.5 交互調變( Intermodulation ).....................15 2.4.6 雙調測試(Two tone test)........................16 2.4.7 串接級之非線性效應..........................18 2.5 穩定度.............................................19 2.5.1 無條件穩定的條件............................19 2.5.2 K-Δ測試...................................19 2.5.3 μ測試......................................20 第三章 低雜訊放大器......................................21 3.1 低雜訊放大器在通訊系統中所扮演的腳色...............21 3.2 S參數與低雜訊放大器之間的關係......................22 3.3 雜訊匹配(Noise Factor V.S. Zs).......................22 3.4 CMOS低雜訊放大器雜訊模型.........................24 3.4.1 通道熱雜訊(channel thermal noise)...............24 3.4.2 分佈閘極電阻雜訊(distributed gate resistance noise).25 3.4.3 最佳化MOS雜訊.............................26 3.4.4 感應閘極電流雜訊(induced gate current noise ).....27 3.5 Inductive degeneration.................................29 3.6 串疊組態...........................................31 3.6.1 米勒效應....................................31 3.6.2 隔離度......................................35 3.6.3 穩定度......................................35 3.7 電路架構...........................................38 3.7.1 輸入級......................................39 3.7.2 可控制的增益................................40 3.7.3 輸出匹配....................................40 3.7.4 偏壓電路....................................41 3.8 模擬結果...........................................42 3.9 低雜訊放大器規格與模擬表說明.......................49 3.10 低雜訊放大器佈局圖.................................50 3.11 晶片顯微鏡攝影.....................................51 第四章 混波器..............................................52 4.1 混波器在在通訊系統中所扮演的腳色...................52 4.2 轉換增益(Conversion Gain)...........................53 4.3 SSB Noise Figure VS DSB Noise Figure...............54 4.4 混波器的非線性效應.................................55 4.5 超外差架構 VS 直接降頻架構.........................56 4.5.1 混波器在超外差架構下產生的問題..............56 4.5.2 Imagie Frequency問題.........................57 4.6 DC Offset...........................................58 4.7 開關式混波器.......................................59 4.8 Single Balance VS Double Balance.......................59 4.9 主動混波器介紹.....................................60 4.9.1 Current Switch Mixer..........................60 4.9.2 Gilbert Cell Mixer.............................63 4.10 電路架構...........................................65 4.11 模擬結果...........................................68 4.12 混波器規格與模擬表說明.............................74 4.13 混波器佈局圖.......................................75 4.14 晶片顯微鏡攝影.....................................76 第五章 量測結果...........................................77 5.1 低雜訊放大器S參數量測..............................77 5.2 低雜訊放大器S參數量測結果..........................79 5.3 低雜訊放大器Noise Figure量測.........................80 5.4 混波器S參數量測....................................81 5.5 混波器S參數量測結果................................82 5.6 混波器增益量測......................................83 5.7 改進晶片量側的方法..................................83 5.8 現在晶片量測狀況....................................84 第六章 結論................................................85 Reference.....................................................86zh_TW
dc.language.isoen_USzh_TW
dc.publisher電機工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2308200716010500en_US
dc.subjectCMOSen_US
dc.subject無線區域網路zh_TW
dc.subjectWLANen_US
dc.subjectIEEE 802.11 b/gen_US
dc.subjectcurrent reuseen_US
dc.subjectLNAen_US
dc.subjectSubharmonic Mixeren_US
dc.subjectNoise figureen_US
dc.subjectControl Gainen_US
dc.subject低雜訊放大器zh_TW
dc.subject次諧波混波器zh_TW
dc.subject可調式增益zh_TW
dc.title應用於無線區域網路接收機之射頻前端電路zh_TW
dc.titleThe RF Front End for WLAN Receiveren_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:電機工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.